scholarly journals Effect of Low Zeolite Doses on Plants and Soil Physicochemical Properties

Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2617
Author(s):  
Alicja Szatanik-Kloc ◽  
Justyna Szerement ◽  
Agnieszka Adamczuk ◽  
Grzegorz Józefaciuk

Thousands of tons of zeolitic materials are used yearly as soil conditioners and components of slow-release fertilizers. A positive influence of application of zeolites on plant growth has been frequently observed. Because zeolites have extremely large cation exchange capacity, surface area, porosity and water holding capacity, a paradigm has aroused that increasing plant growth is caused by a long-lasting improvement of soil physicochemical properties by zeolites. In the first year of our field experiment performed on a poor soil with zeolite rates from 1 to 8 t/ha and N fertilization, an increase in spring wheat yield was observed. Any effect on soil cation exchange capacity (CEC), surface area (S), pH-dependent surface charge (Qv), mesoporosity, water holding capacity and plant available water (PAW) was noted. This positive effect of zeolite on plants could be due to extra nutrients supplied by the mineral (primarily potassium—1 ton of the studied zeolite contained around 15 kg of exchangeable potassium). In the second year of the experiment (NPK treatment on previously zeolitized soil), the zeolite presence did not impact plant yield. No long-term effect of the zeolite on plants was observed in the third year after soil zeolitization, when, as in the first year, only N fertilization was applied. That there were no significant changes in the above-mentioned physicochemical properties of the field soil after the addition of zeolite was most likely due to high dilution of the mineral in the soil (8 t/ha zeolite is only ~0.35% of the soil mass in the root zone). To determine how much zeolite is needed to improve soil physicochemical properties, much higher zeolite rates than those applied in the field were studied in the laboratory. The latter studies showed that CEC and S increased proportionally to the zeolite percentage in the soil. The Qv of the zeolite was lower than that of the soil, so a decrease in soil variable charge was observed due to zeolite addition. Surprisingly, a slight increase in PAW, even at the largest zeolite dose (from 9.5% for the control soil to 13% for a mixture of 40 g zeolite and 100 g soil), was observed. It resulted from small alterations of the soil macrostructure: although the input of small zeolite pores was seen in pore size distributions, the larger pores responsible for the storage of PAW were almost not affected by the zeolite addition.

Clay Minerals ◽  
2013 ◽  
Vol 48 (2) ◽  
pp. 343-361 ◽  
Author(s):  
M. Valter ◽  
M. Plötze

AbstractBentonite is a potential material for use in the engineered barrier of radioactive waste repositories because of its low hydraulic permeability, self-sealing capability and retention capacity. It is expected that bentonite would react at the elevated temperatures accompanying the radioactive decay in the nuclear waste. The presented study was started in order to improve understanding of the coupled influence of temperature and (pore) water on the physicochemical and mineralogical properties of bentonite during thermal treatment under near-field relevant conditions. Granular Na-bentonite MX-80 was differently saturated (Sr = 1–0.05) and stored at different temperatures (50–150°C) in a closed system. Upon dismantling after different periods of time (3 to 18 months), mineralogical characteristics, cation exchange capacity and content of leachable cations, as well as physicochemical properties such as surface area and water adsorption were investigated.The results showed a high mineralogical stability. A slight conversion from the sodium to an earth alkali form of the bentonite was observed. However, considerable changes in the physicochemical properties of the bentonite were observed, particularly by treatment above the critical temperature of 120°C. The cation exchange capacity decreased during heating at 150°C by approximately. 10%. The specific surface area dropped by more than 50%. The water uptake capacity under free swelling conditions showed a slight tendency to lower values especially for samples heated for more than 12 months. The water vapour adsorption ability in contrast drops by 25% already within three months at T = 120°C. These changes are mostly related to the variations in the interlayer cation composition and to smectite aggregation processes. The observed alterations are rather subtle. However, temperatures ⩾ 120°C had a remarkable negative influence on different properties of MX-80.


Author(s):  
Nsengimana Venuste

Different tree speciesare blamed to have negative effects on soil ecosystems by changing soil physicochemical properties, and hence soil quality. However, few researches to verify this statement were done in Rwanda. This study provides prior information on the effects of planted forest tree species on soil physicochemical properties. It was conducted in the Arboretum of Ruhande, in southern Rwanda. Soil cores were collected in plots of exotic, native and agroforestry tree species. Collected soils were analysed for soil pH, total nitrogen, organic carbon, available phosphorus,  aggregate stability, bulk density, soil humidity, cation exchange capacity, and soil texture. Soils sampled under exotic tree species were acidic, richin soil organic carbon, and in soil available phosphorus. Native and agroforestry tree species offer better conditions in soil pH, soil water content, cation exchange capacity, clay and silt. Less variations in soil total nitrogen and soil bulk density were found in soils sampled under all studied forest types. Research concluded that studiedtree species have different effects on soil physicochemical parameters. It recommended further studies to generalize these findings. Key words: soil, exotic, native, agroforestry, soil properties


2010 ◽  
Vol 13 (1) ◽  
pp. 17-21
Author(s):  
Mai Thi Hoang Vo ◽  
Thach Ngoc Le

Montmorillonite is a "green" solid catalyst and support used in many organic reations. In this paper, we describe the method to prepare two acid-activated montmorillonites from Binh Thuan and Lam Dong clays. We still prepared some cation exchanged montmorillonites as Fe3+ Zn 2+ and Al 3+. The Vietnamese montmorillonites and K-10, KSF (two commercial Fluka montmorillonites) were determinated simultanneously on some physicochemical properties such as crystalline structure, chemical composition, cation exchange capacity, adsorption capacity, porisity, surface area and acidity. The results shows that the quality of Vietnamese montmorillonites are equivalent with K-10 and KSF.


Clay Minerals ◽  
2019 ◽  
Vol 54 (4) ◽  
pp. 369-377 ◽  
Author(s):  
Maja Milošević ◽  
Predrag Dabić ◽  
Sabina Kovač ◽  
Lazar Kaluđerović ◽  
Mihovil Logar

AbstractThis study focuses on the mineralogical characterization of four raw clay samples from Dobrodo deposit, Serbia. Several analytical methods were applied to determine the chemical and mineralogical composition, morphology and physical properties (colour, plasticity, specific surface area, particle size and cation-exchange capacity) of the clay samples. Kaolinite, smectite and illite are the predominant phases in all of the samples studied that contain between 60.2 and 87.1 wt.% of clay. Quartz, feldspars, paragonite and Ti- and Fe-bearing phases were also identified. The relatively high SiO2/Al2O3 mass ratio indicates abundant quartz. The cation-exchange capacity of the samples varied between low and moderately charged clay minerals (12–52 mmol 100 g–1) with specific surface area values ranging from 94 to 410 m2 g–1. The plasticity index values (11–23%) suggest low to moderate plasticity. Preliminary results show that most of the raw clay from Dobrodo deposit might be suitable for use in ceramic applications.


2019 ◽  
Vol 8 (4) ◽  
pp. 61
Author(s):  
Nan Xu ◽  
Jehangir H. Bhadha ◽  
Abul Rabbany ◽  
Stewart Swanson

The addition of organic amendments and cover cropping on sandy soils are regenerative farming practices that can potentially enhance soil health. South Florida mineral soils present low soil quality due to their sandy texture and low organic matter (OM) content. Few studies have focused on evaluating the effects of farm-based management regenerative practices in this region. The objective of this study was to evaluate changes in soil properties associated with two regenerative farming practices - horse bedding application in combination with cover cropping (cowpea, Vigna unguiculata), compared to the practice of cover cropping only for two years. The soil quality indicators that were tested included soil pH, bulk density, water holding capacity, cation exchange capacity, OM, active carbon, soil protein and major nutrients (N, P, K). Results indicated no significant changes in soil pH, but a significant reduction in soil bulk density and a significant increase in maximum water holding capacity for both practices. Cation exchange capacity and the amounts of active carbon increased significantly after 1.5-year of the farming practices. Horse bedding application with cover cropping showed a significant 4% increase in OM during a short period. A significant increase in plant-available P was also observed under these two practices. Based on this study, horse bedding application as an organic amendment in conjunction with cover cropping provides an enhanced soil health effect compared to just cover cropping. As local growers explore farming option to improve soil health particularly during the fallow period using regenerative farming practices on sandy soils, these results will assist in their decision making.


2018 ◽  
Vol 3 (1) ◽  
pp. 721
Author(s):  
Dr. Cecilio Hernández B. ◽  
M.Sc. Jorge Olmos ◽  
Licda. Yahaira Espinosa

The initial results of the properties that have been determined to a sample of natural zeolite, coming from areas of volcanic activity of Panama, and that has been identified with potential for its industrial explotation, are presented. Some physicochemical properties, chemical composition and morphology were determined. A natural zeolite with an intermediate level of Si/Al (2.62), low levels of dissolved salts and a morphology with pores-shaped channels with a diameter of 5 mm are observed.Keywords: natural zeolites, chemisorption, morphology, macropores, cation exchange capacity


2016 ◽  
Vol 30 (3) ◽  
pp. 369-374 ◽  
Author(s):  
Kamil Skic ◽  
Patrycja Boguta ◽  
Zofia Sokołowska

Abstract Parameters of specific surface area as well as surface charge were used to determine and compare sorption properties of soils with different physicochemical characteristics. The gravimetric method was used to obtain water vapour isotherms and then specific surface areas, whereas surface charge was estimated from potentiometric titration curves. The specific surface area varied from 12.55 to 132.69 m2 g−1 for Haplic Cambisol and Mollic Gleysol soil, respectively, and generally decreased with pH (R=0.835; α = 0.05) and when bulk density (R=−0.736; α = 0.05) as well as ash content (R=−0.751; α = 0.05) increased. In the case of surface charge, the values ranged from 63.00 to 844.67 μmol g−1 Haplic Fluvisol and Mollic Gleysol, respecively. Organic matter gave significant contributions to the specific surface area and cation exchange capacity due to the large surface area and numerous surface functional groups, containing adsorption sites for water vapour molecules and for ions. The values of cation exchange capacity and specific surface area correlated linearly at the level of R=0.985; α = 0.05.


Sign in / Sign up

Export Citation Format

Share Document