scholarly journals Deformation Behavior and Tensile Properties of the Semi-Equiaxed Microstructure in Near Alpha Titanium Alloy

Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3380
Author(s):  
Minglang Luo ◽  
Tingyi Lin ◽  
Lei Zhou ◽  
Wei Li ◽  
Yilong Liang ◽  
...  

The tensile deformation and fracture behavior of a particular semi-equiaxed microstructure (S-EM) in a near alpha titanium alloy TA19 are investigated by an in situ method. In the S-EM, the thin β lamellae grow through the equiaxed αp phase (αp), and the original αp/βtrans interface in the bimodal microstructure largely disappears, forming a blurry interface between the semi-equiaxed αp phase (equiaxed αp phase that is grew through by the thin β lamellae) and the transformed β microstructure (βtrans). The formation of dense slip bands inside the semi-equiaxed αp phase in the S-EM is inhibited by the thin β lamellae during the tensile deformation. The special characteristics of the S-EM reduce the stress concentration at the interface, and the crack initiation probability in the blurry semi-αp/βtrans interface decreased compared to the distinct αp/βtrans interface in a conventional equiaxed microstructure (EM). Moreover, the ultimate tensile strength of the S-EM is higher than that of the EM with a slight loss of plasticity.

2018 ◽  
Vol 740 ◽  
pp. 660-668 ◽  
Author(s):  
Xuehua Zhang ◽  
Shuangyin Zhang ◽  
Qinyang Zhao ◽  
Yongqing Zhao ◽  
Rong Li ◽  
...  

2004 ◽  
Vol 12 (1) ◽  
pp. 43-53 ◽  
Author(s):  
Y. Wu ◽  
L. Zhen ◽  
D.Z. Yang ◽  
M.S. Kim ◽  
S.K. Hwang ◽  
...  

2021 ◽  
Vol 799 ◽  
pp. 140187
Author(s):  
Jing Wang ◽  
Yongqing Zhao ◽  
Wei Zhou ◽  
Qinyang Zhao ◽  
Shixing Huang ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5794
Author(s):  
Suping Pan ◽  
Mingzhu Fu ◽  
Huiqun Liu ◽  
Yuqiang Chen ◽  
Danqing Yi

The plastic deformation processes and fracture behavior of a Ti–5Al–5Mo–5V–1Cr–1Fe alloy with bimodal and lamellar microstructures were studied by room-temperature tensile tests with in situ scanning electron microscopy (SEM) observations. The results indicate that a bimodal microstructure has a lower strength but higher ductility than a lamellar microstructure. For the bimodal microstructure, parallel, deep slip bands (SBs) are first noticed in the primary α (αp) phase lying at an angle of about 45° to the direction of the applied tension, while they are first observed in the coarse lath α (αL) phase or its interface at grain boundaries (GBs) for the lamellar microstructure. The β matrix undergoes larger plastic deformation than the αL phase in the bimodal microstructure before fracture. Microcracks are prone to nucleate at the αp/β interface and interconnect, finally causing the fracture of the bimodal microstructure. The plastic deformation is mainly restricted to within the coarse αL phase at GBs, which promotes the formation of microcracks and the intergranular fracture of the lamellar microstructure.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 814
Author(s):  
Yaping Bai ◽  
Meng Li ◽  
Chao Cheng ◽  
Jianping Li ◽  
Yongchun Guo ◽  
...  

In this study, Fe-25Mn-xAl-8Ni-C alloys (x = 10 wt.%, 11 wt.%, 12 wt.%, 13 wt.%) were prepared by a vacuum arc melting method, and the microstructure of this series of alloys and the in situ tensile deformation behavior were studied. The results showed that Fe-25Mn-xAl-8Ni-C alloys mainly contained austenite phase with a small amount of NiAl compound. With the content of Al increasing, the amount of austenite decreased while the amount of NiAl compound increased. When the Al content increased to 12 wt.%, the interface between austenite and NiAl compound and austenitic internal started to precipitate k-carbide phase. In situ tensile results also showed that as the content of Al increased, the alloy elongation decreased gradually, and the tensile strength first increased and then decreased. When the Al content was up to 11 wt.%, the elongation and tensile strength were 2.6% and 702.5 MPa, respectively; the results of in situ tensile dynamic observations show that during the process of stretching, austenite deformed first, and crack initiation mainly occurred at the interface between austenite and NiAl compound, and propagated along the interface, resulting in fracture of the alloy.


Sign in / Sign up

Export Citation Format

Share Document