scholarly journals Compressive Behaviour of Aluminium Pyramidal Lattice Material-Filled Tubes

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3817
Author(s):  
Yingjie Huang ◽  
Wenke Zha ◽  
Yingying Xue ◽  
Zimu Shi

This study focuses on the uniaxial compressive behaviour of thin-walled Al alloy tubes filled with pyramidal lattice material. The mechanical properties of an empty tube, Al pyramidal lattice material, and pyramidal lattice material-filled tube were investigated. The results show that the pyramidal lattice material-filled tubes are stronger and provide greater energy absorption on account of the interaction between the pyramidal lattice material and the surrounding tube.

Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4791
Author(s):  
Hui Guo ◽  
Cheng Wang ◽  
Jin Zhang ◽  
Yunlai Deng

The effects of Zn and Mg content in thin-walled square extrusions of Al-Zn-Mg alloys on its crashworthiness were investigated, and the correlation between the crushing properties, mechanical properties, and microstructures of the profiles were investigated. The results showed that the strength and the compression properties were gradually increased with a decrease in the Zn/Mg ratios (from 12.48 to 4.57). When the Zn/Mg ratio is lower (less than 6.29), an increase in the Mg content simultaneously improves the alloy strength and the compression properties. An increase in Zn content (from 5.07 to 6.77) can improve the strength of the alloy however, it does not affect the compression properties. However, the higher Zn contents (6.77%) would lead to cracking in advance during the compressing, which reduces the compression energy absorption capacities of the product. Therefore, in order to obtain higher strength and excellent compression properties, the Zn/Mg ratio should be reduced. For the upper limit, the Zn content should not be too high (less than 6.77), as this may lead to early cracking and failure. For the lower limit, the Mg content should be higher (more than 0.91) to make sure that the alloy has excellent compression properties and higher strength.


Author(s):  
Mohsen Teimouri ◽  
Masoud Asgari

A topology optimization (TO) method is used to develop new and efficient unit cells to be used in additively manufactured porous lattice structures. Two types of unit cells including solid and thin-walled shell-type ones are introduced for generating the desired regular and functionally graded (FG) lattice structures. To evaluate structural stiffness and crushing behavior of the proposed lattice structures, their mechanical properties, and energy absorption parameters have been calculated through implementing finite element (FE) simulations on them. To validate the simulations, two samples were fabricated by a stereolithography (SLA) machine. Besides, the effects of geometrical parameters and optimizing scheme of the unit cells on the mechanical properties of the proposed structures are studied. Consequently, energy absorption parameters have been calculated and compared for both the solid and thin-walled lattice structures to evaluate their ability in energy absorption. It was found in general that for the solid lattice structures, the mechanical properties, and the crushing parameters are directly affected by porosity though in shell-type ones superior mechanical properties could be achieved even for a smaller proportion of material usage.


2014 ◽  
Vol 626 ◽  
pp. 91-96 ◽  
Author(s):  
Rafea Dakhil Hussein ◽  
Dong Ruan ◽  
Jeong Whan Yoon

Thin-walled honeycombs have been extensively investigated and they are often used as sandwich panels to enhance the energy absorption in many applications including vehicles. In this study, axial compressive tests at three different velocities (3, 30 and 300 mm/min, respectively) by using an MTS machine were conducted with both empty and hybrid aluminium tubes filled with aluminium honeycomb. The aim of this work is to study the contribution of aluminium honeycomb in square hybrid tubes in terms of the deformation mode and energy absorption. Square aluminium tubes made of AA 6060-T5 with two different side lengths, 40 and 50 mm, were used. Two types of honeycombs made of AA 5052 with different cell wall thicknesses were used in this study. The force and displacement of the tubes were recorded during the test. The specific energy absorption (SEA) of honeycomb-filled tubes was compared with the sum of the SEA of an empty tube and honeycomb. It was noticed that the SEA of the hybrid tubes depended on the honeycomb density and the loading velocity within the velocity range studied.


2012 ◽  
Vol 450-451 ◽  
pp. 325-328
Author(s):  
Wei Han Yang ◽  
Zhan Guang Wang ◽  
Ping Cai ◽  
Jing Zhi Hu

2015 ◽  
Vol 53 (8) ◽  
pp. 535-540 ◽  
Author(s):  
Young Gun Ko ◽  
Dong Hyuk Shin ◽  
Hae Woong Yang ◽  
Yeon Sung Kim ◽  
Joo Hyun Park ◽  
...  

2015 ◽  
Vol 10 (1) ◽  
pp. 2641-2648
Author(s):  
Rizk Mostafa Shalaby ◽  
Mohamed Munther ◽  
Abu-Bakr Al-Bidawi ◽  
Mustafa Kamal

The greatest advantage of Sn-Zn eutectic is its low melting point (198 oC) which is close to the melting point. of Sn-Pb eutectic solder (183 oC), as well as its low price per mass unit compared with Sn-Ag and Sn-Ag-Cu solders. In this paper, the effect of 0.0, 1.0, 2.0, 3.0, 4.0, and 5.0 wt. % Al as ternary additions on melting temperature, microstructure, microhardness and mechanical properties of the Sn-9Zn lead-free solders were investigated. It is shown that the alloying additions of Al at 4 wt. % to the Sn-Zn binary system lead to lower of the melting point to 195.72 ˚C.  From x-ray diffraction analysis, an aluminium phase, designated α-Al is detected for 4 and 5 wt. % Al compositions. The formation of an aluminium phase causes a pronounced increase in the electrical resistivity and microhardness. The ternary Sn-9Zn-2 wt.%Al exhibits micro hardness superior to Sn-9Zn binary alloy. The better Vickers hardness and melting points of the ternary alloy is attributed to solid solution effect, grain size refinement and precipitation of Al and Zn in the Sn matrix.  The Sn-9%Zn-4%Al alloy is a lead-free solder designed for possible drop-in replacement of Pb-Sn solders.  


2014 ◽  
Vol 66 (4) ◽  
pp. 520-524 ◽  
Author(s):  
Serkan Büyükdoğan ◽  
Süleyman Gündüz ◽  
Mustafa Türkmen

Purpose – The paper aims to provide new observations about static strain ageing in aluminium (Al) alloys which are widely used in structural applications. Design/methodology/approach – The present work aims to provide theoretical and practical information to industries or researchers who may be interested in the effect of static strain ageing on mechanical properties of Al alloys. The data are sorted into the following sections: introduction, materials and experimental procedure, results and discussion and conclusions. Findings – Tensile strength, proof strength (0.2 per cent) and percentage elongation measurement were used to investigate the effect of strain ageing on the mechanical properties. Wear tests were performed by sliding the pin specimens, which were prepared from as-received, solution heat-treated, deformed and undeformed specimens after ageing, on high-speed tool steel (64 HRC). It is concluded that the variations in ageing time improved the strength and wear resistance of the 6063 Al alloy; however, a plastically deformed solution-treated alloy has higher strength and wear resistance than undeformed specimens for different ageing times at 180°C. Practical implications – A very useful source of information for industries using or planning to produce Al alloys. Originality/value – This paper fulfils an identified resource need and offers practical help to the industries.


Author(s):  
Haolei Mou ◽  
Zhenyu Feng ◽  
Jiang Xie ◽  
Jun Zou ◽  
Kun Zhou

AbstractTo analysis the failure and energy absorption of carbon fiber reinforced polymer (CFRP) thin-walled square tube, the quasi-static axial compression loading tests are conducted for [±45]3s square tube, and the square tube after test is scanned to further investigate the failure mechanism. Three different finite element models, i.e. single-layer shell model, multi-layer shell model and stacked shell mode, are developed by using the Puck 2000 matrix failure criterion and Yamada Sun fiber failure criterion, and three models are verified and compared according to the experimental energy absorption metrics. The experimental and simulation results show that the failure mode of [±45]3s square tube is the local buckling failure mode, and the energy are absorbed mainly by intralaminar and interlaminar delamination, fiber elastic deformation, fiber debonding and fracture, matrix deformation cracking and longitudinal crack propagation. Three different finite element models can reproduce the collapse behaviours of [±45]3s square tube to some extent, but the stacked shell model can better reproduce the failure mode, and the difference of specific energy absorption (SEA) is minimum, which shows the numerical simulation results are in better agreement with the test results.


2021 ◽  
Vol 104 (3) ◽  
pp. 003685042110368
Author(s):  
Dong An ◽  
Jiaqi Song ◽  
Hailiang Xu ◽  
Jingzong Zhang ◽  
Yimin Song ◽  
...  

When the rock burst occurs, energy absorption support is an important method to solve the impact failure. To achieve constant resistance performance of energy absorption device, as an important component of the support, the mechanical properties of one kind of prefolded tube is analyzed by quasi-static compression test. The deformation process of compression test is simulated by ABAQUS and plastic strain nephogram of the numerical model are studied. It is found that the main factors affecting the fluctuation of force-displacement curve is the stiffness of concave side wall. The original tube is improved to constant resistance by changing the side wall. The friction coefficient affects the folding order and form of the energy absorbing device. Lifting the concave side wall stiffness can improve the overall stiffness of energy absorption device and slow down the falling section of force-displacement curve. It is always squeezed by adjacent convex side wall in the process of folding, with large plastic deformation. Compared with the original one, the improved prefolded tube designed in this paper can keep the maximum bearing capacity ( Pmax), increase the total energy absorption ( E), improve the specific energy absorption (SEA), and decrease the variance ( S2) of force-displacement curve.


Sign in / Sign up

Export Citation Format

Share Document