scholarly journals Preserving the Cellular Tissue Structure of Maize Pith Though Dry Fractionation Processes: A Key Point to Use as Insulating Agro-Materials

Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5350
Author(s):  
Claire Mayer-Laigle ◽  
Laia Haurie Ibarra ◽  
Amélie Breysse ◽  
Marina Palumbo ◽  
Frédéric Mabille ◽  
...  

Plant biomass has various compositions and structures at different scales (from the component organs to their constitutive tissues) to support its functional properties. Recovering each part of the plant without damaging its structure poses a challenge to preserving its original properties for differential dedicated end uses, and considerably increases its added value. In this work, an original combination of grinding based on shearing stress and separation based on particle size and density was successfully used to sort rind (65% w/w) and pith (35% w/w) from maize stem internodes. More than 97% of the rind was isolated. The pith alveolar structure was well preserved in coarse particles, making them suitable for insulation bio-based composite materials, a promising alternative to conventional nonbiodegradable insulation panels. Boards produced from the dry fractionated pith exhibited thermal conductivities like those produced from hand dissected pith, with values equal to 0.037 W·mK−1 and 0.039 W·mK−1, respectively. In the finest fraction (particle size <1 mm), the pith vascular bundles (around 300–400 µm in diameter) were dissociated from parenchyma cells and successfully isolated using a cutting-edge electrostatic separator. Their structures, which provide the plant structural support, make them potentially valuable for reinforcement in composite materials.

Author(s):  
Ashwin Kumar Tulasi ◽  
Anil Goud Kandhula ◽  
Ravi Krishna Velupula

Topiramate is a second-generation antiepileptic drug used in partial, generalized seizures as an oral tablet. Oral route of administration is most convenient but shows delayed absorption. Moreover, in emergency cases, parenteral administration is not possible as it requires medical assistance. Hence, the present study was aimed to develop topiramate mucoadhesive nanoparticles for intranasal administration using ionotropic gelation method. The developed nanoparticles were evaluated for physico-chemical properties like particle size, zeta potential, surface morphology, drug content, entrapment efficiency, in vitro drug release, mucoadhesive strength, and ex vivo permeation studies in excised porcine nasal mucosa. Optimized nanoparticle formulation (T9) was composed oil mucoadhesive agent (Chitosan 1% w/w), cross linking polymer (TPP) and topiramate 275mg, 100mg and 4% respectively. It showed particle size of 350nm, high encapsulation efficacy and strong mucoadhesive strength. In vitro drug diffusion of optimized formulation showed 95.12% release of drug after 180min. Ex-vivo permeation of drug across nasal mucosa was   88.05 % after 180min. Nasocilial toxicity studies showed optimized formulation did not damage the nasal mucosa. Thus, the intranasal administration of topiramate using chitosan can be a promising alternative for brain targeting and the treatment of epilepsy.


2021 ◽  
pp. 36-40
Author(s):  
F.F. Yusubov

Tribotechnical indicators of environmentally friendly frictional composite materials with phenol-formaldehyde matrix are studied. Friction tests were carried out on a MMW-1 vertical tribometer according to the pin-on-disk scheme. Keywords: brake pads, composites, friction and wear, plasticizers, degradation, porosity. [email protected]


Perspektif ◽  
2020 ◽  
Vol 18 (2) ◽  
pp. 135
Author(s):  
Suci Wulandari ◽  
Sumanto Sumanto ◽  
Saefudin Saefudin

<p>Biomassa tanaman perkebunan dapat dimanfaatkan untuk pangan, pakan, dan bioenergi. Hasil penelitian dan perkembangan teknologi telah mendorong pemanfaatan biomassa bagian-bagian tanaman tersebut. Tanaman perkebunan memiliki potensi besar untuk menghasilkan biomassa yang dapat dimanfaatkan dalam pengembangan energi terbarukan. Pemetaan potensi biomassa telah banyak dilakukan pada tanaman perkebunan, seperti pada: tebu, kakao, kelapa sawit, kemiri sunan, jarak pagar, kopi, kelapa dalam, karet dan teh. Pengembangan sistem produksi pangan dan biomassa untuk pembangkit energi melalui sistem multi tanam berbasis komoditas perkebunan telah dikembangkan.  Di Kabupaten Aceh Timur telah dilakukan pengembangan sistem agroindustri juga memanfaatkan semua produk samping, mendorong daur ulang dan pemanfaatan residu. Pemanfaatan potensi bioenergi masih dihadapkan pada berbagai kendala distribusi, kontinuitas pasokan bahan dan aspek ekonomi. Menyikapi hal tersebut langkah strategis dapat dilakukan melalui: analisis neraca karbon, alokasi lahan, pemanfaatan lahan, pemanfaatan sumber daya secara berkelanjutan, dukungan teknologi, fokus pada nilai tambah yang tinggi dan perbaikan tata kelola. Selanjutnya perbaikan pada pengembangan sistem pangan energi terpadu dapat ditempuh melalui: (1) sosialisasi dari inovasi teknologi, (2) membentuk kawasan-kawasan pertanian terpadu di daerah sentra pengembangan dan (3) memperkuat kelembagaan petani untuk mengembangkan agroindustri.</p><p> </p><p><strong> </strong><strong> </strong>ABSTRACT</p><p align="center">Biomass from estate crops can be used for food, feed, and bioenergy. The results of research and technological developments have encouraged the utilization of biomass of these plant parts. Plantation crops have great potential to produce biomass that can be utilized in the development of renewable energy. Mapping of biomass potential has been carried out in plantation crops, such as: sugar cane, cocoa, oil palm, candlenut, jatropha, coffee, deep coconut, rubber, and tea. The development of food and biomass production systems for energy generation through a commodity-based multi-cropping system has been developed. In East Aceh District an agro-industrial system development has also been carried out utilizing all byproducts, encouraging recycling and utilizing residues. The utilization of bioenergy is still faced with various distribution constraints, continuity of material supply and economic aspects. In response to this, strategic steps can be taken through carbon balance analysis, land allocation, land use, sustainable use of resources, technology support, focus on high added value and improved governance. Furthermore, improvements to the development of integrated energy food systems can be pursued through (1) socialization of technological innovations, (2) establishing integrated agricultural areas in plant centers and (3) strengthening farmer institutions to develop agro-industries.</p><p> </p>


Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1667 ◽  
Author(s):  
Dipen Rajak ◽  
Durgesh Pagar ◽  
Pradeep Menezes ◽  
Emanoil Linul

Composites have been found to be the most promising and discerning material available in this century. Presently, composites reinforced with fibers of synthetic or natural materials are gaining more importance as demands for lightweight materials with high strength for specific applications are growing in the market. Fiber-reinforced polymer composite offers not only high strength to weight ratio, but also reveals exceptional properties such as high durability; stiffness; damping property; flexural strength; and resistance to corrosion, wear, impact, and fire. These wide ranges of diverse features have led composite materials to find applications in mechanical, construction, aerospace, automobile, biomedical, marine, and many other manufacturing industries. Performance of composite materials predominantly depends on their constituent elements and manufacturing techniques, therefore, functional properties of various fibers available worldwide, their classifications, and the manufacturing techniques used to fabricate the composite materials need to be studied in order to figure out the optimized characteristic of the material for the desired application. An overview of a diverse range of fibers, their properties, functionality, classification, and various fiber composite manufacturing techniques is presented to discover the optimized fiber-reinforced composite material for significant applications. Their exceptional performance in the numerous fields of applications have made fiber-reinforced composite materials a promising alternative over solitary metals or alloys.


2016 ◽  
Vol 846 ◽  
pp. 172-176 ◽  
Author(s):  
Choon Siong Lim ◽  
Pao Ter Teo ◽  
Nurulakmal Mohd Sharif

Significant quantity of solid wastes, especially electric arc furnace (EAF) slag is generated by the growing Malaysia’s steel industries. Recycling them offer a more sustainable solution and also added value to the solid wastes. Therefore, in this project, an attempt was made to recycle the EAF slag waste as one of raw materials in ceramic tile. In our preliminary study of assessing the suitability of the slag in ceramic tile, it was found that at fixed firing temperature of 1150°C, increasing of EAF slag added (wt.%) would deteriorate the properties of tile produced. Meanwhile, introduce an additional silica and feldspar led to better properties of the tile. Optimum composition of the ceramic tile was found to be 40 wt.% EAF slag – 30 wt.% – 20 wt.% silica – 10 wt.% feldspar. Hence, this study aims to further improve the properties of the tile by varying EAF slag’s milling time (15 minutes and 30 minutes) and firing temperature (1075°C, 1100°C, 1125°C and 1150°C). Results obtained show that as milling time was increased from 15 minutes to 30 minutes, average particle size, X50 of the slag was reduced from 53 µm to 3 µm. When the particles size of EAF slag added was smaller, the tile had a higher modulus of rupture (MOR), higher bulk density, lower apparent porosity and water absorption. The improved MOR was due to increase in total anorthite and wollastonite crystalline phases (wt.%) in the tile. The MOR was the highest at firing temperature of 1100°C for 3µm EAF slag particle whereas for larger particle size (53µm), the MOR was highest at 1150°C. This suggests possible improvement in reduction of firing temperature when smaller particles are used.


2015 ◽  
Vol 60 (3) ◽  
pp. 1819-1824 ◽  
Author(s):  
A.E. Tomiczek ◽  
R. Mech ◽  
L. A. Dobrzański ◽  
T. Tański

AbstractThe aim of this work was to observe the changes in the magnetomechanical properties of composite materials with different Tb0.3Dy0.7Fe1.9(Terfenol-D) powder particle-size distributions and varying volume fractions in the polyurethane matrix. The results show a direct relationship between the properties and the particle size of the Tb0.3Dy0.7Fe1.9powder: the increases in the particle-size distribution of the Tb0.3Dy0.7Fe1.9powder in the matrix amplify the magnetostrictive responses and the compressive modulus values. Moreover, it was found that the key role in efficiency of the transformation of magnetic energy into mechanical plays the initial compressing pre-stress.


Sign in / Sign up

Export Citation Format

Share Document