scholarly journals Design Rules for Hybrid Additive Manufacturing Combining Selective Laser Melting and Micromilling

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5753
Author(s):  
David Sommer ◽  
Babette Götzendorfer ◽  
Cemal Esen ◽  
Ralf Hellmann

We report on a comprehensive study to evaluate fundamental properties of a hybrid manufacturing approach, combining selective laser melting and high speed milling, and to characterize typical geometrical features and conclude on a catalogue of design rules. As for any additive manufacturing approach, the understanding of the machine properties and the process behaviour as well as such a selection guide is of upmost importance to foster the implementation of new machining concepts and support design engineers. Geometrical accuracy between digitally designed and physically realized parts made of maraging steel and dimensional limits are analyzed by stripe line projection. In particular, we identify design rules for numerous basic geometric elements like walls, cylinders, angles, inclinations, overhangs, notches, inner and outer radii of spheres, chamfers in build direction, and holes of different shape, respectively, as being manufactured by the hybrid approach and compare them to sole selective laser melting. While the cutting tool defines the manufacturability of, e.g., edges and corners, the milling itself improves the surface roughness to Ra < 2μm. Thus, the given advantages of this hybrid process, e.g., space-resolved and custom-designed roughness and the superior geometrical accuracy are evaluated. Finally, we exemplify the potential of this particular promising hybrid approach by demonstrating an injection mold with a conformal cooling for a charge socket for an electro mobile.

Author(s):  
Karolien Kempen ◽  
Bey Vrancken ◽  
Sam Buls ◽  
Lore Thijs ◽  
Jan Van Humbeeck ◽  
...  

Cracks and delamination, resulting from residual stresses, are a barrier in the world of additive manufacturing and selective laser melting (SLM) that prohibits the use of many metals in this field. By preheating the baseplate, thermal gradients are lowered and stresses can be reduced. In this work, some initial tests were performed with M2 high speed steel (HSS). The influence of preheating on density and mechanical and physical properties is investigated. The paper shows many promising results for the production of SLM parts in materials that are very sensitive to crack formation and delamination. When using a preheating of 200 °C, crack-free M2 HSS parts were produced with a relative density of 99.8%.


2018 ◽  
Vol 786 ◽  
pp. 356-363
Author(s):  
Tero Jokelainen ◽  
Kimmo Mäkelä ◽  
Aappo Mustakangas ◽  
Jari Mäkelä ◽  
Kari Mäntyjärvi

Additive Manufacturing (AM) does not yet have a standardized way to measure performance. Here a AM machines dimensional accuracy is measured trough acceptance test (AT) and AM machines capability is tested trough test parts. Test parts are created with specific geometrical features using a 3D AM machine. Performance of the machine is then evaluated trough accuracy of test parts geometry. AM machine here uses selective laser melting (SLM) process. This machine has done Factory acceptance test (FAT) to ascertain this machine ́s geometrical accuracy with material AISI 316L. Manufacturer promises accuracy of ±0.05 mm. These parts are used as comparison to AT parts made in this study. After installation two AT parts are manufactured with AM machine. One with AISI 316L and one AlSi10Mg. Dimensional accuracy of geometrical features on these parts are then compared to FAT part and to one another. Machines capability is measured trough two test parts done with material AlSi10Mg. Two of the test parts are done at the same time using same model as the FAT. Parts are printed without supports and with features facing same directions. Features of these parts were then evaluated. Another test to find out AM machines capability was to create part consisting of pipes doing 90˚ angle resulting in horizontal and vertical holes. Dimensional accuracy and circularity of holes was measured. Through these tests machines capability is benchmarked.


ACTA IMEKO ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 96
Author(s):  
Giulio D'Emilia ◽  
Antoniomaria Di Ilio ◽  
Antonella Gaspari ◽  
Emanuela Natale ◽  
Antonios G. Stamopoulos

<p class="Abstract"><span lang="EN-US">In this work, the additive manufacturing process selective laser melting is analysed with the aim of realising a complex piece for aerospace applications. In particular, the effect of the manufacturing process and of the following thermal treatments on the dimensions of the workpiece is evaluated. The study is based on a hybrid approach including a simulation of the whole manufacturing process by advanced software packages and the dimensional measurements of the realised pieces taken by a coordinate measuring machine (CMM). The integrated use of simulation and measurements is carried out with the aim of validating the simulation results and of identifying the operational limits of both approaches; this analysis is based on metrological evaluation of the results of both the simulation and the tests, taking into account the uncertainty of the data. In addition, the main causes of uncertainty for the simulation activity and the experimental data have been identified, and the effects of some of them have also been experimentally evaluated. Based on the experimental validation, the simulation seems to predict the absolute displacement of the supports of the piece in a satisfactory way, while it is unable, in the actual configuration, to assess the conformity of the surface to its very tight shape tolerances. Conformity assessment of the surface should be carried out by CMM measurement. Integrated use of simulation and experimental results is expected to strongly improve the accuracy of simulation results for the effective and accurate design and control of the additive manufacturing process, including dimensional control and thermal treatments to mitigate induced thermal stresses.</span></p>


Author(s):  
Filippo Simoni ◽  
Andrea Huxol ◽  
Franz-Josef Villmer

AbstractIn the last years, Additive Manufacturing, thanks to its capability of continuous improvements in performance and cost-efficiency, was able to partly replace and redefine well-established manufacturing processes. This research is based on the idea to achieve great cost and operational benefits especially in the field of tool making for injection molding by combining traditional and additive manufacturing in one process chain. Special attention is given to the surface quality in terms of surface roughness and its optimization directly in the Selective Laser Melting process. This article presents the possibility for a remelting process of the SLM parts as a way to optimize the surfaces of the produced parts. The influence of laser remelting on the surface roughness of the parts is analyzed while varying machine parameters like laser power and scan settings. Laser remelting with optimized parameter settings considerably improves the surface quality of SLM parts and is a great starting point for further post-processing techniques, which require a low initial value of surface roughness.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3603
Author(s):  
Tim Pasang ◽  
Benny Tavlovich ◽  
Omry Yannay ◽  
Ben Jakson ◽  
Mike Fry ◽  
...  

An investigation of mechanical properties of Ti6Al4V produced by additive manufacturing (AM) in the as-printed condition have been conducted and compared with wrought alloys. The AM samples were built by Selective Laser Melting (SLM) and Electron Beam Melting (EBM) in 0°, 45° and 90°—relative to horizontal direction. Similarly, the wrought samples were also cut and tested in the same directions relative to the plate rolling direction. The microstructures of the samples were significantly different on all samples. α′ martensite was observed on the SLM, acicular α on EBM and combination of both on the wrought alloy. EBM samples had higher surface roughness (Ra) compared with both SLM and wrought alloy. SLM samples were comparatively harder than wrought alloy and EBM. Tensile strength of the wrought alloy was higher in all directions except for 45°, where SLM samples showed higher strength than both EBM and wrought alloy on that direction. The ductility of the wrought alloy was consistently higher than both SLM and EBM indicated by clear necking feature on the wrought alloy samples. Dimples were observed on all fracture surfaces.


2019 ◽  
Vol 109 (01-02) ◽  
pp. 24-29
Author(s):  
E. Abele ◽  
T. Scherer ◽  
F. Geßner ◽  
M. Weigold

Additive Fertigungsverfahren zeichnen sich durch große Gestaltungsfreiheit aus, welche die Herstellung komplexer Bauteile ermöglicht. Angesichts hoher Fertigungskosten ist die Prozesssicherheit nachgeordneter Bearbeitungsschritte (wie zum Beispiel die Gewindefertigung) von großer Bedeutung. Der Artikel stellt die Ergebnisse einer Untersuchungsreihe vor, die unterschiedliche Ansätze der Gewindefertigung in Bauteilen aus Stahl behandelt, die mittels Selektivem Laserschmelzverfahren gefertigt wurden. &nbsp; Additive manufacturing processes are characterized by a high degree of design freedom to enablet the production of complex components. To reduce manufacturing costs, the process reliability of downstream processing steps (e. g. thread production) is of great importance. This article presents the results of a series of investigations dealing with different approaches to thread production in steel components manufactured by selective laser melting


Author(s):  
Shoichi Tamura ◽  
Takashi Matsumura ◽  
Atsushi Ezura ◽  
Kazuo Mori

Abstract Additive manufacturing process of maraging steel has been studied for high value parts in aerospace and automotive industries. The hybrid additive / subtractive manufacturing is effective to achieve tight tolerances and surface finishes. The additive process induces anisotropic mechanical properties of maraging steel, which depends on the laser scanning direction. Because anisotropy in the workpiece material has an influence on the cutting process, the surface finish and the dimension accuracy change according to the direction of the cutter feed with respect to the laser scanning direction. Therefore, the cutting parameters should be determined to control the cutting force considering material anisotropy. The paper discusses the cutting force in milling of maraging steel stacked with selective laser melting, as an additive manufacturing process. Anisotropic effect on the cutting forces is proved with the changing rate of the cutting force in milling of the workpieces stacked by repeating laser scanning at 0/90 degrees and 45/-45 degrees. The cutting forces, then, are analyzed in the chip flow models with piling up of orthogonal cuttings. The force model associates anisotropy with the shear stress on the shear plane. The changes in the cutting forces with the feed direction are discussed in the cutting tests and analysis.


Author(s):  
Christian Felber ◽  
Florian Rödl ◽  
Ferdinand Haider

Abstract The most promising metal processing additive manufacturing technique in industry is selective laser melting, but only a few alloys are commercially available, limiting the potential of this technique. In particular high strength aluminum alloys, which are of great importance in the automotive industry, are missing. An aluminum 2024 alloy, reinforced by Ti-6Al-4V and B4C particles, could be used as a high strength alternative for aluminum alloys. Heat treating can be used to improve the mechanical properties of the metal matrix composite. Dynamic scanning calorimetry shows the formation of Al2Cu precipitates in the matrix instead of the expected Al2CuMg phases due to the loss of magnesium during printing, and precipitation processes are accelerated due to particle reinforcement and additive manufacturing. Strong reactions between aluminum and Ti-6Al-4V are observed in the microstructure, while B4C shows no reaction with the matrix or the titanium. The material shows high hardness, high stiffness, and low ductility through precipitation and particle reinforcement.


Sign in / Sign up

Export Citation Format

Share Document