scholarly journals Biophysical Properties of Foamed and Solid Polymers Used in Orthotics and Prosthetics

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6877
Author(s):  
Klemen Bohinc ◽  
Anže Abram ◽  
Anamarija Zore ◽  
Roman Štukelj ◽  
Ana Lenarčič ◽  
...  

Orthotic and prosthetic materials should have good mechanical and antibacterial properties. Therefore, in our study, we consider four common foamed closed-cells and two solid polymeric materials regarding their mechanical behaviour and tendency for bacterial adhesion. For all materials, the surface roughness, hydrophobicity, zeta potential, tensile properties, hardness and CIE color parameters were measured. We found that foamed polymeric materials have higher roughness, higher hydrophobicity, lower Young’s modulus, lower maximum tensile strength and lower hardness than solid materials. Bacterial adhesion test measurements based on observation by scanning electron microscopy show much a lower adhesion extent of S. aureus on solid materials than on foamed materials. The measured biophysical properties could be the key data for users to select the optimal materials.

2018 ◽  
Vol 243 ◽  
pp. 00017 ◽  
Author(s):  
Daria Goncharova ◽  
Ekaterina Gavrilenko ◽  
Anna Nemoykina ◽  
Valery Svetlichnyi

The paper studies physicochemical and antibacterial properties of ZnO nanoparticles obtained by pulsed laser ablation in water and air. Their composition and structure were studied by X-ray diffraction, transmission and scanning electron microscopy. Antibacterial activity of the nanoparticles was examined by its affection on Gram-positive Staphylococcus aureus (S.aureus). The dependence of nanoparticles’ physical and chemical antibacterial properties on the conditions of the ablation was shown. The model materials for the antibacterial bandage were made of cotton, filter paper and biodegradable polymer scaffolds (poly-l-lactide acid), and then they were coated with the obtained ZnO nanoparticles. The model bandage materials were examined by the scanning electron microscopy method and their antibacterial activity (ISO 20743:2013) was determined. High activity of all the samples against S.aureus was proved.


2020 ◽  
Vol 36 (3) ◽  
pp. 285-311
Author(s):  
Ali Tajdari ◽  
Amir Babaei ◽  
Alireza Goudarzi ◽  
Razie Partovi

In this research, first, ZnO nanorods were synthesized by hydrothermal method and characterized in terms of morphological and structural properties by means of field emission scanning electron microscopy, Fourier transform infrared, and X-ray diffraction techniques. Subsequently, polylactic acid/ZnO, polylactic acid/TiO2, and polylactic acid/ZnO/TiO2 nanocomposites with different percentages of nanoparticles and two different types of ZnO morphologies were prepared and their microstructural, optical, mechanical, hydrolytic degradation, and antibacterial properties were investigated. Field emission scanning electron microscopy results of polylactic acid/ZnO and polylactic acid/TiO2 samples showed a proper dispersion and nanoparticle distribution for low percentages (up to 5 wt%) and increased aggregation for the higher percentages. Besides, a large increase in the aggregation tendency was observed for combined nanoparticles (polylactic acid/ZnO/TiO2 nanocomposites). Results of the tensile test, the UV–Vis absorption tests, and the hydrolytic degradation tests of the samples showed an enhanced mechanical (approximately 55% increase in the presence of 3–5 wt% of nanoparticles) and light absorption and degradation (approximately 85% increase in the presence of 3–10 wt% of nanoparticles) for the polylactic acid by incorporating nanoparticles. It was also observed that, in addition to the quality of dispersion and distribution of nanoparticles in the polymeric matrix, the type of morphology of nanoparticles can contribute to the improvement of these properties. The cylindrical morphology of ZnO played a greater role on improving the polylactic acid mechanical properties compared to the spherical ZnO morphology (approximately 20%). On the contrary, the increased polylactic acid optical properties and degradation with ZnO spherical morphology were more pronounced (approximately 60%). Interestingly, when both ZnO and TiO2 were added, a synergistic effect in the case of UV-shielding and degradation rate and alternatively, a detrimental effect on the mechanical properties were detected. (The polylactic acid optical properties increased by about 17% and its degradation more than doubled.) Furthermore, the antibacterial activity of polylactic acid was investigated against the two Gram-positive Listeria monocytogenes and Gram-negative bacteria Escherichia coli by incorporating nanoparticles. The results indicated that as the nanoparticle percentage increases, the antibacterial activity steadily increases.


2020 ◽  
Vol 35 (4-5) ◽  
pp. 389-398
Author(s):  
Tarık Eren ◽  
Gülay Baysal ◽  
Faik Doğan

There is a growing interest in new type of biocidal compounds with antibacterial properties against bacteria. In this study, new antibacterial synthetic materials bearing curcumin and cationic polymers were synthesized. In the synthesis stage, the methacrylate functional cationic monomer was synthesized via the Michael addition route by using 3-acryloxy-2-hydroxypropyl methacrylate and 3-amino pyridine to obtain Monomer 1. Monomer 1 was further quaternized with hexyl bromide to obtain a cationic methacrylate functional monomer. Free-radical polymerization of Monomer 1 and methyl acrylate was conducted in the presence of azobisisobutyronitrile under dimethylformamide solvent. The composite formulation was conducted by using turmeric extract Curcuma longa (curcumin), hydroxyapatite, montmorillonite, and silver nitrate. The materials were analyzed by using the methods of X-ray diffraction, nuclear magnetic resonance, Fourier transform infrared spectroscopy, and scanning electron microscopy. The biocidal activities against the bacteria Escherichia coli, Listeria monocytogenes, Salmonella, and Staphylococcus aureus were analyzed using agar well diffusion method. From the Fourier transform infrared, X-ray diffraction, and scanning electron microscopy analysis results of the synthesized nanocomposites, it is seen that they form strong connections with the components added to the composites and form an exfoliated structure. According to the antibacterial analysis results, the nanocomposites obtained have showed a strong antibacterial resistance against E.coli, L.monocytogenes, Salmonella, and S. aureus bacteria, and the high inhibition zone areas were obtained.


2012 ◽  
Vol 535-537 ◽  
pp. 992-995
Author(s):  
Kun Mediaswanti ◽  
Vi Khanh Truong ◽  
Jafar Hasan ◽  
Elena P. Ivanova ◽  
Francois Malherbe ◽  
...  

Titanium and titanium alloys have been widely employed in many load-bearing orthopaedic applications due to their excellent strength and corrosion resistance. However, postimplantation infections might occur even though considerable studies have been made. Choosing a bio-friendly alloying element is one way to reduce infection risk. The aim of this study is to evaluate the extent of bacterial attachment on titanium, tantalum, niobium and tin surfaces. Two pathogenic bacterial strains, namely Staphylococcus aureus CIP 65.8T and Pseudomonas aeruginosa ATCC 9027, were used in this study. Quantification of bacterial attachment was performed using scanning electron microscopy. Results indicated that the surface chemistry and topography of the investigated materials significantly influence the degree of P. aeruginosa and S. aureus adhesion; however, surface wettability did not show a significant impact upon bacterial retention. In this study, tin was shown to be the most attractive material for bacteria adhesion but tantalum limits the bacterial adhesion. Therefore, it is suggested to limit the amount of tin as an titanium alloying element due to its nature to attract P. aeruginosa and S. aureus adhesion.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Lucas Pereira Borges ◽  
Julio Cesar Campos Ferreira-Filho ◽  
Julia Medeiros Martins ◽  
Caroline Vieira Alves ◽  
Bianca Marques Santiago ◽  
...  

The purpose of this work was to verifyin vitroadherence ofE. corrodensandS. oralisto the surface of tongue piercings made of surgical steel, titanium, Bioplast, and Teflon. For this, 160 piercings were used for the count of Colony Forming Units (CFU) and 32 piercings for analysis under scanning electron microscopy. Of these, 96 (24 of each type) were individually incubated in 5 mL of BHI broth and 50 μL of inoculum at 37°C/24 h. The other 96 piercings formed the control group and were individually incubated in 5 mL of BHI broth at 37°C/24 h. Plates were incubated at 37°C/48 h for counting of CFU/mL and data were submitted to statistical analysis (pvalue<0.05). ForE. corrodens, difference among types of material was observed (p<0.001) and titanium and surgical steel showed lower bacterial adherence. The adherence ofS. oralisdiffered among piercings, showing lower colonization (p<0.007) in titanium and surgical steel piercings. The four types of piercings were susceptible to colonization byE. corrodensandS. oralis, and bacterial adhesion was more significant in those made of Bioplast and Teflon. The piercings presented bacterial colonies on their surface, being higher in plastic piercings probably due to their uneven and rough surface.


2002 ◽  
Vol 8 (I1) ◽  
pp. 20-20

Topic: Characterization of Non-Conductive or Charging Materials by Microbeam AnalysisThe goal of this topical conference is to present the state of the art for materials characterization of non-conductive or charging materials using microbeam analysis. Examples of charging materials include polymeric materials, ceramic materials, and photoresist materials in the microelectronic industry. Also, the characterization of biological specimens will be covered because they are prone to problems related to charging. These materials are of great technological importance and their characterization is still a great challenge because they charge when analyzed with an electron beam. The techniques of microbeam analysis that will be considered are: X-ray Microanalysis in the Electron Microprobe, Low Voltage Scanning Electron Microscopy, Environmental Scanning Electron Microscopy, Analytical Electron Microscopy with Field Emission Transmission Electron Microscopy, and Focused Ion Beam Milling for specimen preparation. World experts will present papers on these topics. Papers from this topical conference will be published in a special issue of Microscopy & Microanalysis.


2015 ◽  
Vol 813-814 ◽  
pp. 84-89 ◽  
Author(s):  
S. Ghanaraja ◽  
D.J. Dileep Kumar ◽  
K.S. Ravikumar ◽  
B.M. Madhusudan

Many of our modern technologies require materials with unusual combinations of properties that cannot be met by the conventional metal alloys, ceramics and polymeric materials. This is especially true for materials that are needed for aerospace, underwater and transportation applications. An economical way of producing metal matrix composite (MMC) is the incorporation of the particles into the liquid metal and casting. The objective of this work is to reinforce Al 1100-Mg alloy with different wt% of MnO2 (0, 3, 6, 9 and 12) was added by melt stirring method and Hot Extrusion is carried out. Microstructural Studies using Scanning Electron Microscopy (SEM) and Mechanical property like hardness and tensile properties have been investigated for extruded base alloy and composites.


2020 ◽  
Author(s):  
Ross Anderson ◽  
et al.

Supplemental methodological details, antibacterial properties of clays, other minerals with distinct fossil/matrix distributions, summaries of mineralogy by taxon, data tables, statistical summaries, and light/scanning electron microscopy–energy-dispersive X-ray spectroscopy images of fossil specimens showing X-ray diffraction selected areas.<br>


2021 ◽  
Author(s):  
Xiqi Zhuang ◽  
Weibing Yang ◽  
Yongquan Zhang ◽  
Wanming Wang

Abstract Purpose We have developed a iodine-coated implant and evaluated its antibacterial properties against Gram-negative bacteria by constructing an experimental osteomyelitis model.Methods In this study, 16 titanium Kirschner-wires were selected, of which 8 titanium K-wires were treated with iodine on the surface by electrophoretic deposition with PVP-I solution. In our study, the standard strain of Escherichia coli (ATCC 25922) was selected, and 16 New Zealand rabbits were selected. There were 8 rabbits in the iodine-coated group and 8 rabbits in the non-iodine-coated group. All animals were drilled in the left proximal tibia after successful anesthesia.After that,the iodine-coated group was implanted with iodine-coated titanium K-wires.Then, 25ul of 2×108CFU/ml bacterial suspension was injected into the bone marrow cavity with pipette gun, and the bone hole was sealed with bone wax.They were reared in cages for 1 week after operation, and evaluated and analyzed by microbiology, histopathology, scanning electron microscopy, etc.Results The results of gross wound score and microbiology showed that the wound infection of the iodine-coated group was less severe than that of the non-iodine-coated group, which was confirmed by the histopathological results. Scanning electron microscopy and confocal microscopy showed that the amount of bacteria on the surface of iodine-coated K-wires was significantly lower than that non-iodine-coated K-wires. Conclusions In this study, we have verified that the iodine-coated titanium implant could effectively inhibit E. coli infection in the early stage of infection by constructing an acute osteomyelitis model.


Sign in / Sign up

Export Citation Format

Share Document