scholarly journals Vortex Flow on the Surface Generated by the Onset of a Buoyancy-Induced Non-Boussinesq Convection in the Bulk of a Normal Liquid Helium

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7514
Author(s):  
Alexander Pelmenev ◽  
Alexander Levchenko ◽  
Leonid Mezhov-Deglin

The onset of the Rayleigh–Benard convection (RBC) in a heated from above normal He-I layer in a cylindrical vessel in the temperature range Tλ < T ≤ Tm (RBC in non-Oberbeck–Boussinesq approximation) is attended by the emergence of a number of vortices on the free liquid surface. Here, Tλ = 2.1768 K is the temperature of the superfluid He-II–normal He-I phase transition, and the liquid density passes through a well-pronounced maximum at Tm ≈ Tλ + 6 mK. The inner vessel diameter was D = 12.4 cm, and the helium layer thickness was h ≈ 2.5 cm. The mutual interaction of the vortices between each other and their interaction with turbulent structures appeared in the layer volume during the RBC development gave rise to the formation of a vortex dipole (two large-scale vortices) on the surface. Characteristic sizes of the vortices were limited by the vessel diameter. The formation of large-scale vortices with characteristic sizes twice larger than the layer thickness can be attributed to the arising an inverse vortex cascade on the two-dimensional layer surface. Moreover, when the layer temperature exceeds Tm, convective flows in the volume decay. In the absence of the energy pumping from the bulk, the total energy of the vortex system on the surface decreases with time according to a power law.

Author(s):  
M. V. Pham ◽  
F. Plourde ◽  
S. K. Doan

Heat transfer enhancement is a subject of major concern in numerous fields of industry and research. Having received undivided attention over the years, it is still studied worldwide. Given the exponential growth of computing power, large-scale numerical simulations are growing steadily more realistic, and it is now possible to obtain accurate time-dependent solutions with far fewer preliminary assumptions about the problems. As a result, an increasingly wide range of physics is now open for exploration. More specifically, it is time to take full advantage of large eddy simulation technique so as to describe heat transfer in staggered parallel-plate flows. In fact, from simple theory through experimental results, it has been demonstrated that surface interruption enhances heat transfer. Staggered parallel-plate geometries are of great potential interest, and yet many numerical works dedicated to them have been tarnished by excessively simple assumptions. That is to say, numerical simulations have generally hypothesized lengthwise periodicity, even though flows are not periodic; moreover, the LES technique has not been employed with sufficient frequency. Actually, our primary objective is to analyze turbulent influence with regard to heat transfers in staggered parallel-plate fin geometries. In order to do so, we have developed a LES code, and numerical results are compared with regard to several grid mesh resolutions. We have focused mainly upon identification of turbulent structures and their role in heat transfer enhancement. Another key point involves the distinct roles of boundary restart and the vortex shedding mechanism on heat transfer and friction factor.


2010 ◽  
Vol 662 ◽  
pp. 409-446 ◽  
Author(s):  
G. SILANO ◽  
K. R. SREENIVASAN ◽  
R. VERZICCO

We summarize the results of an extensive campaign of direct numerical simulations of Rayleigh–Bénard convection at moderate and high Prandtl numbers (10−1 ≤ Pr ≤ 104) and moderate Rayleigh numbers (105 ≤ Ra ≤ 109). The computational domain is a cylindrical cell of aspect ratio Γ = 1/2, with the no-slip condition imposed on all boundaries. By scaling the numerical results, we find that the free-fall velocity should be multiplied by $1/\sqrt{{\it Pr}}$ in order to obtain a more appropriate representation of the large-scale velocity at high Pr. We investigate the Nusselt and the Reynolds number dependences on Ra and Pr, comparing the outcome with previous numerical and experimental results. Depending on Pr, we obtain different power laws of the Nusselt number with respect to Ra, ranging from Ra2/7 for Pr = 1 up to Ra0.31 for Pr = 103. The Nusselt number is independent of Pr. The Reynolds number scales as ${\it Re}\,{\sim}\,\sqrt{{\it Ra}}/{\it Pr}$, neglecting logarithmic corrections. We analyse the global and local features of viscous and thermal boundary layers and their scaling behaviours with respect to Ra and Pr, and with respect to the Reynolds and Péclet numbers. We find that the flow approaches a saturation state when Reynolds number decreases below the critical value, Res ≃ 40. The thermal-boundary-layer thickness increases slightly (instead of decreasing) when the Péclet number increases, because of the moderating influence of the viscous boundary layer. The simulated ranges of Ra and Pr contain steady, periodic and turbulent solutions. A rough estimate of the transition from the steady to the unsteady state is obtained by monitoring the time evolution of the system until it reaches stationary solutions. We find multiple solutions as long-term phenomena at Ra = 108 and Pr = 103, which, however, do not result in significantly different Nusselt numbers. One of these multiple solutions, even if stable over a long time interval, shows a break in the mid-plane symmetry of the temperature profile. We analyse the flow structures through the transitional phases by direct visualizations of the temperature and velocity fields. A wide variety of large-scale circulation and plume structures has been found. The single-roll circulation is characteristic only of the steady and periodic solutions. For other regimes at lower Pr, the mean flow generally consists of two opposite toroidal structures; at higher Pr, the flow is organized in the form of multi-jet structures, extending mostly in the vertical direction. At high Pr, plumes mainly detach from sheet-like structures. The signatures of different large-scale structures are generally well reflected in the data trends with respect to Ra, less in those with respect to Pr.


2021 ◽  
Author(s):  
Christina Tsai ◽  
Kuang-Ting Wu

&lt;p&gt;It is demonstrated that turbulent boundary layers are populated by a hierarchy of recurrent structures, normally referred to as the coherent structures. Thus, it is desirable to gain a better understanding of the spatial-temporal characteristics of coherent structures and their impact on fluid particles. Furthermore, the ejection and sweep events play an important role in turbulent statistics. Therefore, this study focuses on the characterizations of flow particles under the influence of the above-mentioned two structures.&lt;/p&gt;&lt;div&gt;&lt;span&gt;With regard to the geometry of turbulent structures, &lt;/span&gt;&lt;span&gt;Meinhart &amp; Adrian (1995)&amp;#160;&lt;/span&gt;first highlighted the existence of large and irregularly shaped regions of uniform streamwise momentum zone (hereafter referred to as a uniform momentum zone, or UMZs), regions of relatively similar streamwise velocity with coherence in the streamwise and wall-normal directions. &amp;#160;&lt;span&gt;Subsequently,&amp;#160;&lt;/span&gt;&lt;span&gt;de Silva et al. (2017)&amp;#160;&lt;/span&gt;&lt;span&gt;provided a detection criterion that had previously been utilized to locate the uniform momentum zones (UMZ) and demonstrated the application of this criterion to estimate the spatial locations of the edges that demarcates UMZs.&lt;/span&gt;&lt;/div&gt;&lt;div&gt;&amp;#160;&lt;/div&gt;&lt;div&gt;In this study, detection of the existence of UMZs is a pre-process of identifying the coherent structures. After the edges of UMZs are determined, the identification procedure of ejection and sweep events from turbulent flow DNS data should be defined. As such, an integrated criterion of distinguishing ejection and sweep events is proposed. Based on the integrated criterion, the statistical characterizations of coherent structures from available turbulent flow data such as event durations, event maximum heights, and wall-normal and streamwise lengths can be presented.&lt;/div&gt;


2021 ◽  
Vol 929 ◽  
Author(s):  
N. Agastya Balantrapu ◽  
Christopher Hickling ◽  
W. Nathan Alexander ◽  
William Devenport

Experiments were performed over a body of revolution at a length-based Reynolds number of 1.9 million. While the lateral curvature parameters are moderate ( $\delta /r_s < 2, r_s^+>500$ , where $\delta$ is the boundary layer thickness and r s is the radius of curvature), the pressure gradient is increasingly adverse ( $\beta _{C} \in [5 \text {--} 18]$ where $\beta_{C}$ is Clauser’s pressure gradient parameter), representative of vehicle-relevant conditions. The mean flow in the outer regions of this fully attached boundary layer displays some properties of a free-shear layer, with the mean-velocity and turbulence intensity profiles attaining self-similarity with the ‘embedded shear layer’ scaling (Schatzman & Thomas, J. Fluid Mech., vol. 815, 2017, pp. 592–642). Spectral analysis of the streamwise turbulence revealed that, as the mean flow decelerates, the large-scale motions energize across the boundary layer, growing proportionally with the boundary layer thickness. When scaled with the shear layer parameters, the distribution of the energy in the low-frequency region is approximately self-similar, emphasizing the role of the embedded shear layer in the large-scale motions. The correlation structure of the boundary layer is discussed at length to supply information towards the development of turbulence and aeroacoustic models. One major finding is that the estimation of integral turbulence length scales from single-point measurements, via Taylor's hypothesis, requires significant corrections to the convection velocity in the inner 50 % of the boundary layer. The apparent convection velocity (estimated from the ratio of integral length scale to the time scale), is approximately 40 % greater than the local mean velocity, suggesting the turbulence is convected much faster than previously thought. Closer to the wall even higher corrections are required.


2006 ◽  
Vol 13 (2) ◽  
pp. 205-222 ◽  
Author(s):  
G. V. Levina ◽  
I. A. Burylov

Abstract. A numerical approach is substantiated for searching for the large-scale alpha-like instability in thermoconvective turbulence. The main idea of the search strategy is the application of a forcing function which can have a physical interpretation. The forcing simulates the influence of small-scale helical turbulence generated in a rotating fluid with internal heat sources and is applied to naturally induced fully developed convective flows. The strategy is tested using the Rayleigh-Bénard convection in an extended horizontal layer of incompressible fluid heated from below. The most important finding is an enlargement of the typical horizontal scale of the forming helical convective structures accompanied by a cells merging, an essential increase in the kinetic energy of flows and intensification of heat transfer. The results of modeling allow explaining how the helical feedback can work providing the non-zero mean helicity generation and the mutual intensification of horizontal and vertical circulation, and demonstrate how the energy of the additional helical source can be effectively converted into the energy of intensive large-scale vortex flow.


2011 ◽  
Vol 688 ◽  
pp. 461-492 ◽  
Author(s):  
Stephan Weiss ◽  
Guenter Ahlers

AbstractWe report on the influence of rotation about a vertical axis on the large-scale circulation (LSC) of turbulent Rayleigh–Bénard convection in a cylindrical vessel with aspect ratio $\Gamma \equiv D/ L= 0. 50$ (where $D$ is the diameter and $L$ the height of the sample). The working fluid is water at an average temperature ${T}_{av} = 40{~}^{\ensuremath{\circ} } \mathrm{C} $ with a Prandtl number $\mathit{Pr}= 4. 38$. For rotation rates $\Omega \lesssim 1~\mathrm{rad} ~{\mathrm{s} }^{\ensuremath{-} 1} $, corresponding to inverse Rossby numbers $1/ \mathit{Ro}$ between 0 and 20, we investigated the temperature distribution at the sidewall and from it deduced properties of the LSC. The work covered the Rayleigh-number range $2. 3\ensuremath{\times} 1{0}^{9} \lesssim \mathit{Ra}\lesssim 7. 2\ensuremath{\times} 1{0}^{10} $. We measured the vertical sidewall temperature gradient, the dynamics of the LSC and flow-mode transitions from single-roll states (SRSs) to double-roll states (DRSs). We found that modest rotation stabilizes the SRSs. For modest $1/ \mathit{Ro}\lesssim 1$ we found the unexpected result that the vertical LSC plane rotated in the prograde direction (i.e. faster than the sample chamber), with the rotation at the horizontal midplane faster than near the top and bottom. This differential rotation led to disruptive events called half-turns, where the plane of the top or bottom section of the LSC underwent a rotation through an angle of $2\lrm{\pi} $ relative to the main portion of the LSC. The signature of the LSC persisted even for large $1/ \mathit{Ro}$ where Ekman vortices are expected. We consider the possibility that this signature actually is generated by a two-vortex state rather than by a LSC. Whenever possible, we compare our results with those for a $\Gamma = 1$ sample by Zhong & Ahlers (J. Fluid Mech., vol. 665, 2010, pp. 300–333).


2018 ◽  
Vol 180 ◽  
pp. 02020
Author(s):  
Jakub Drahotský ◽  
Pavel Hanzelka ◽  
Věra Musilová ◽  
Michal Macek ◽  
Ronald du Puits ◽  
...  

Modelling of large-scale natural (thermally-generated) turbulent flows (such as the turbulent convection in Earth’s atmosphere, oceans, or Sun) is approached in laboratory experiments in the simplified model system called the Rayleigh-Bénard convection (RBC). We present preliminary measurements of vertical temperature profiles in the cell with the height of 4:7 m, 7:15m in diameter, obtained at the Barrel of Ilmenau (BOI), the worldwide largest experimental setup to study highly turbulent RBC, newly equipped with the Luna ODiSI-B optical fibre system. In our configuration, the system permits to measure the temperature with a high spatial resolution of 5mm along a very thin glass optical fibre with the length of 5m and seems to be perfectly suited for measurement of time series of instantaneous vertical temperature profiles. The system was supplemented with the two Pt100 vertically movable probes specially designed by us for reference temperature profiles measurements.


2019 ◽  
Vol 865 ◽  
Author(s):  
Kevin Kevin ◽  
Jason Monty ◽  
Nicholas Hutchins

This paper quantifies the instantaneous form of large-scale turbulent structures in canonical smooth-wall boundary layers, demonstrating that they adhere to a form that is consistent with the self-sustaining streak instability model suggested by Flores & Jiménez (Phys. Fluids, vol. 22, 2010, 071704) and Hwang & Cossu (Phys. Fluids, vol. 23, 2011, 061702). Our motivation for this study stems from previous observations of large-scale streaks that have been spatially locked in position within spanwise-heterogeneous boundary layers. Here, using similar tools, we demonstrate that the randomly occurring large-scale structures in canonical layers show similar behaviour. Statistically, we show that the signature of large-scale coherent structures exhibits increasing meandering behaviour with distance from the wall. At the upper edge of the boundary layer, where these structures are severely misaligned from the main-flow direction, the induced velocities associated with the strongly yawed vortex packets/clusters yield a significant spanwise-velocity component leading to an apparent oblique coherence of spanwise-velocity fluctuations. This pronounced meandering behaviour also gives rise to a dominant streamwise periodicity at a wavelength of approximately $6\unicode[STIX]{x1D6FF}$. We further statistically show that the quasi-streamwise roll-modes formed adjacent to these very large wavy motions are often one-sided (spanwise asymmetric), in stark contrast to the counter-rotating form suggested by conventional conditionally averaged representations. To summarise, we sketch a representative picture of the typical large-scale structures based on the evidence gathered in this study.


Sign in / Sign up

Export Citation Format

Share Document