scholarly journals A Review on Plant-Mediated Synthesis of Bimetallic Nanoparticles, Characterisation and Their Biological Applications

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7677
Author(s):  
Lavinia Berta ◽  
Năstaca-Alina Coman ◽  
Aura Rusu ◽  
Corneliu Tanase

The study of bimetallic nanoparticles (BNPs) has constantly been expanding, especially in the last decade. The biosynthesis of BNPs mediated by natural extracts is simple, low-cost, and safe for the environment. Plant extracts contain phenolic compounds that act as reducing agents (flavonoids, terpenoids, tannins, and alkaloids) and stabilising ligands moieties (carbonyl, carboxyl, and amine groups), useful in the green synthesis of nanoparticles (NPs), and are free of toxic by-products. Noble bimetallic NPs (containing silver, gold, platinum, and palladium) have potential for biomedical applications due to their safety, stability in the biological environment, and low toxicity. They substantially impact human health (applications in medicine and pharmacy) due to the proven biological effects (catalytic, antioxidant, antibacterial, antidiabetic, antitumor, hepatoprotective, and regenerative activity). To the best of our knowledge, there are no review papers in the literature on the synthesis and characterisation of plant-mediated BNPs and their pharmacological potential. Thus, an effort has been made to provide a clear perspective on the synthesis of BNPs and the antioxidant, antibacterial, anticancer, antidiabetic, and size/shape-dependent applications of BNPs. Furthermore, we discussed the factors that influence BNPs biosyntheses such as pH, temperature, time, metal ion concentration, and plant extract.

2010 ◽  
Vol 7 (3) ◽  
pp. 1193-1201
Author(s):  
Baghdad Science Journal

In this research, the efficiency of low-cost unmodified wool fibers were used to remove zinc ion from industrial wastewater. Removal of zinc ion was achieved at 99.52% by using simple wool column. The experiment was carried out under varying conditions of (2h) contact time, metal ion concentration (50mg/l), wool fibers quantity to treated water (70g/l), pH(7) & acid concentration (0.05M). The aim of this method is to use a high sensitive, available & cheep natural material which applied successfully for industrial wastewater& synthetic water, where zinc ion concentration was reduced from (14.6mg/l) to (0.07mg/l) & consequently the hazardous effect of contamination was minimized.


2020 ◽  
Vol 11 (4) ◽  
pp. 11891-11904

In the present study, batch mode adsorption was carried out to investigate the adsorption capacity of dried bael flowers (Aegle marmelos) for the adsorptive removal of Cu(II) ions from aqueous solutions by varying agitation time, initial metal concentration, the dose of adsorbent, temperature, and initial pH of the Cu(II) ion solution. The percentage removal of 98.7% was observed at 50 ppm initial metal ion concentration, 0.5 g/100.00 cm3 adsorbent dosage, within the contact time of 120 minutes at 30 ºC in the pH range of 4 – 7. The sorption processes of Cu(II) ions was best described by pseudo-second-order kinetics. Langmuir isotherm had a good fit with the experimental data with 0.97 of correlation coefficient (R2), and the maximum adsorption capacity obtained was 23.14 mg g-1 at 30 ºC. The results obtained from sorption thermodynamic studies suggested that the adsorption process is exothermic and spontaneous. SEM analysis showed tubular voids on the adsorbent. FTIR studies indicated the presence of functional groups like hydroxyl, –C-O, –C=O, and amide groups in the adsorbent, which can probably involve in metal ion adsorption. Therefore, dried bael flowers can be considered an effective low-cost adsorbent for treating Cu(II) ions.


This study showed that kaolinite clay modified with Moringa oleifera pods is a promising low cost adsorbent for the removal of metals from aqueous solution because the resultant composite has higher adsorption capacities, and hence a better metal ions removal efficiency. The efficiencies of these adsorbents for the removal of Pb (II) and Cd (II) ions from aqueous solutions were studied as a function of pH, time, adsorbate concentration and adsorbent dose. Adsorption results showed that pH did significantly affect removal of heavy metal ions between pH 3 and 6. Increasing contact time and initial metal ion concentration increased the sorption capacity of the adsorbent for the metal ions. Adsorbent dosage indicated mainly surface phenomena involving sharing of electrons between the adsorbent surface and the metal ion species. The adsorption of metal ions from aqueous solutions of both metal ions at different initial metal ion concentrations reduced the initial adsorption rates of the adsorption of Pb (II) and Cd (II) by unmodified and modified kaolinite clay.


2019 ◽  
Vol 158 (04) ◽  
pp. 369-382 ◽  
Author(s):  
Jörg Lützner ◽  
Klaus-Peter Günther ◽  
Anne Postler ◽  
Michael Morlock

AbstractAll metal implants in human bodies corrode which results in metal ions release. This is not necessarily a problem and represents for most patients no hazard. However, if a critical metal ion concentration is exceeded, local or rarely systemic problems can occur. This article summarizes the mechanisms of metal ion release and its clinical consequences. Several situations can result in increased metal ion release: metal-on-metal hip arthroplasties with increased wear, increased micromotion at taper interfaces, direct metal-metal contact (polyethylene wear, impingement), erroneously used metal heads after ceramic head fracture. Possible problems are in most cases located close to the concerned joint. Furthermore, there are reports about toxic damage to several organs. Most of these reports refer to erroneously used metal heads in revisions after a broken ceramic head. There is currently no evidence of carcinogenic or teratogenic effects of implants but data is not sufficient to exclude possible effects. Cobalt and chromium blood levels (favorably in whole blood) should be measured in patients with suspected elevated metal ions. According to current knowledge levels below 2 µg/l seem to be uncritical, levels between 2 and 7 µg/l are considered borderline with unknown biological consequences and levels above 7 µg/l indicate a local problem which should be further diagnosed. Metal ion levels always need to be interpreted together with clinical symptoms and imaging results.


2012 ◽  
Vol 9 (3) ◽  
pp. 1389-1399 ◽  
Author(s):  
R. Hema Krishna ◽  
A. V. V. S. Swamy

The powder of mosambi fruit peelings (PMFP) was used as an adsorbent for the removal of heavy metal like Cr (VI) from aqueous solutions was studied using batch tests. The influence of physico-chemical key parameters such as the initial metal ion concentration, pH, agitation time, adsorbent dosage, and the particle size of adsorbent has been considered in batch tests. Sorbent ability to adsorb Cr (VI) ions was examined and the mechanism involved in the process investigated. The optimum results were determined at an initial metal ion concentration was 10 mg/lit, pH=2, agitation time – 60 min, an adsorbent dose (150 mg/50 ml) and the particle size (0.6 mm). The % adsorption, Langmuir constants [Q0=7.51(mg/g) and b=1.69(mg/lit)] Freundlich constant(Kf=2.94), Lagergren rate constants (Kad(min-1)=5.75 x 10-2) for [Cr(VI)] 10 mg/lit were determined for the adsorption system as a function of sorbate concentration. The equilibrium data obtained were tested using Langmuir, Freundlich adsorption isotherm models, and the kinetic data obtained were fitted to pseudo first order model.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
F. Granados-Correa ◽  
J. Vilchis-Granados ◽  
M. Jiménez-Reyes ◽  
L. A. Quiroz-Granados

The hydroxyapatite was successfully synthesized, characterized, and used as an alternative low-cost adsorbent material to study the adsorption behavior of La(III) and Eu(III) ions from nitrate aqueous solutions as a function of contact time, initial metal ion concentration, pH, and temperature by using a bath technique. The kinetic data correspond very well to the pseudo-second-order equation, and in both cases the uptake was affected by intraparticle diffusion. Isotherm adsorption data were well fitted by the Freundlich model equation with1/n>1, indicating a multilayer and cooperative-type adsorption. Thermodynamic parameters for the adsorption systems were determinated at 293, 303, 313, and 323 K. These parameters show that adsorptions of La(III) and Eu(III) ions on hydroxyapatite are endothermic and spontaneous processes. The adsorption was found to follow the order Eu(III) > La(III) and is dependent on ion concentration, pH, and temperature.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
P. Sujatha ◽  
V. Kalarani ◽  
B. Naresh Kumar

The primary objective of the present study is to evaluate the optimization conditions such as kinetic and equilibrium isotherm models involved in the removal of Ni(II) from the aqueous solutions byTrichoderma viride. The biosorbent was characterized by FTIR and SEM. The optimum biosorption conditions were determined as a function of pH, biomass dosage, contact time, initial metal ion concentration, and temperature. The maximum Ni(II) biosorption was obtained at pH 4.5. The equilibrium data were better fit by the Langmuir isotherm model than by the Freundlich isotherm. The kinetic studies indicate that the biosorption process of the metal ion Ni(II) has followed well the pseudo-second-order model. The sum of the square errors (SSE) and chi-square (χ2) tests were also carried out to find the best fit kinetic model and adsorption isotherm. The maximum biosorption capacity (qm) ofT.viridebiomass was found to be 47.6 mg/g for Ni(II) ion. Therefore, it can be concluded thatT.viridebiomass was effective and low-cost potential adsorbent to remove the toxic metal Ni(II) from aqueous solutions. The recovery process of Ni(II) fromT.viridebiomass was found to be higher than 98% by using 0.25 M HNO3. Besides the application of removal of toxic metal Ni(II) from aqueous solutions, the biosorbentT.viridecan be reused for five consecutive sorption-desorption cycles was determined.


2020 ◽  
Vol 4 (1) ◽  
pp. 9-16
Author(s):  
FS Nworie ◽  
EC Oroke ◽  
II Ikelle ◽  
JS Nworu

AbstractStudies on the adsorption of Pb(II) on plantain peels biochar (PPB) was conducted. The carbonized and activated, biochar was characterized using Braunauer-Emmett-Teller (BET) surface area and x-ray diffraction crystallography (XRD). BET analysis of the PPB indicated that the pore size (cc/g) and pore surface area (m2/g) was 8.79 and 16.69 respectively. Result of the XRD evaluated through Debye-Scherrer equation, showed a nanostructure with crystallite size of 14.56 nm. Effects of initial metal ion concentration, pH, and contact time were studied in a batch reaction process. Results showed that the adsorption of lead from aqueous solution increased with an increase in pH and initial concentration. Equilibrium modeling studies suggested that the data fitted mainly to the Langmuir isotherm. Adsorption kinetic data tested using various kinetic models fitted the Weber and Morris intraparticle diffusion model implicating pore diffusion as the main rate limiting step. The sorption studies indicated the potential of plantain peel biochar as an effective, efficient and low cost adsorbent for remediating lead (II) ions contaminated environment.


2021 ◽  
Vol 12 (2) ◽  
pp. 1884-1898

Natural water gets contaminated with heavy metal ions because of industrial effluents' discharge into the aquatic environment. As these heavy metal ions cause various health hazards, they should be removed from the aqueous solution. Heavy metal ion concentration in the aqueous solution is very less, so conventional metal removal and recovery processes cannot be applied here. The adsorption method is a great alternative to all these processes as it is a cost-effective and easy method. The use of natural, low-cost materials as adsorbents is eco-friendly also. However, metal uptake capacity of low-cost materials is very less. So, modification is required for low-cost materials to increase their efficiency. In the present review, different modification procedures adopted by different researchers have been discussed. Different low-cost materials used are sawdust, fruit and vegetable wastes, soil, minerals, etc. The modifying agents are heat, acids, bases, and other chemicals. Nevertheless, most of the studies are limited to batch tests only. Future research should be carried out on the extension of batch tests to column study for the large-scale treatment of contaminated water, and the cost of modification procedures and their impact on the environment should also be assessed.


2020 ◽  
Vol 32 (4) ◽  
pp. 727-732
Author(s):  
Harish Sharma ◽  
Rajesh Kumar ◽  
Mahesh Chandra Vishwakarma ◽  
Sushil Kumar Joshi ◽  
Narender Singh Bhandari

In present study, Pyras pashia leaves were used as low cost biosorbent to study biosorption of Cu(II), Pb(II) and Cd(II) ions from contaminated wastewater. In the employed batch methods pH, contact time, metal ion concentration, temperature, biosorbent doses were taken as study parameters. The pH was varied from pH 1-9 to study the influence of pH on biosorption of metal ions by Pyras pashia. The optimum pH for the removal of Cu(II), Pb(II) and Cd(II) is observed at pH 5. The biosorption equilibrium time was varied between 15-75 min. Langmuir, Freundlich and Temkin isotherms were employed to study the biosorption. The biosorption parameter fits well with Langmuir isotherm. The biosorption of metal ions was increased with increasing biosorbent dose and contact time while increase in pH, metal ion concentration and temperature decrease the biosorption. Thermodynamic data suggest that the bisorption process was spontaneous, feasible and endothermic.


Sign in / Sign up

Export Citation Format

Share Document