scholarly journals A Feasibility Study of Low Cement Content Foamed Concrete Using High Volume of Waste Lime Mud and Fly Ash for Road Embankment

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 86
Author(s):  
Zhanchen Li ◽  
Huaqiang Yuan ◽  
Faliang Gao ◽  
Hongzhi Zhang ◽  
Zhi Ge ◽  
...  

This paper aims to study the feasibility of low cement content foamed concrete using waste lime mud (LM) and fly ash (FA) as mineral additives. The LM/FA ratio was first optimized based on the compressive strength. Isothermal calorimetry test, ESEM, and XRD were used to investigate the role of LM during hydration. Afterward, the optimized LM/FA ratio (1/5) was used to design foamed concrete with various wet densities (600, 700, 800 and 900 kg/m3) and LM–FA dosages (0%, 50%, 60%, 70% and 80%). Flowability measurements and mechanical measurements including compressive strength, flexural strength, splitting strength, elastic modulus, and California bearing ratio were conducted. The results show that the foamed concretes have excellent workability and stability with flowability within 170 and 190 mm. The high alkalinity of LM accelerated the hydration of FA, thereby increasing the early strength. The significant power functions were fitted for the relationships between flexural/splitting and compressive strength with all correlation coefficients (R2) larger with 0.95. The mechanical properties of the foamed concrete increased with the density increasing or LM–FA dosage decreasing. The compressive strength, tensile strength, CBR of all prepared foamed concretes were higher than the minimum requirements of 0.8 and 0.15 MPa and 8%, respectively in the standard.

2017 ◽  
Vol 727 ◽  
pp. 1062-1066
Author(s):  
Hui Chao Chu ◽  
Xian Jun Lyu ◽  
Yan Zhang

A study has been undertaken to investigate the effects, on the properties of foamed concrete, of replacing large volumes of cement with fly ash. This paper reports the results of the properties of foamed concrete and shows that up to 55% of the cement could be replaced without any significant reduction in compressive strength. Foamed concrete with 55% fly ash and good performance were obtained by optimizing the process parameters. The results showed that the compressive strength, dry density, water absorption and thermal conductivity of foamed concrete with 55% fly ash were 0.71MPa, 244kg/m3, 33%, and 0.045 W/mK respectively.


2017 ◽  
Vol 69 (22) ◽  
pp. 1146-1156 ◽  
Author(s):  
M. Roderick Jones ◽  
Kezban Ozlutas ◽  
Li Zheng

2018 ◽  
Vol 20 (2) ◽  
pp. 51
Author(s):  
Antoni . ◽  
Hendra Surya Wibawa ◽  
Djwantoro Hardjito

This study evaluates the effect of particle size distribution (PSD) of high calcium fly ash on high volume fly ash (HVFA) mortar characteristics. Four PSD variations of high calcium fly ash used were: unclassified fly ash and fly ash passing sieve No. 200, No. 325 and No. 400, respectively. The fly ash replacement ratio of the cementitious material ranged between 50-70%. The results show that with smaller fly ash particles size and higher levels of fly ash replacement, the workability of the mixture was increased with longer setting time. There was an increase in mortar compressive strength with finer fly ash particle size, compared to those with unclassified ones, with the highest strength was found at those with fly ash passing mesh No. 325. The increase was found due to better compactability of the mixture. Higher fly ash replacement reduced the mortar’s compressive strength, however, the rate was reduced when finer fly ash particles was used.


2019 ◽  
Vol 967 ◽  
pp. 205-213
Author(s):  
Faiz U.A. Shaikh ◽  
Anwar Hosan

This paper presents the effect of nanosilica (NS) on compressive strength and microstructure of cement paste containing high volume slag and high volume slag-fly ash blend as partial replacement of ordinary Portland cement (OPC). Results show that high volume slag (HVS) cement paste containing 60% slag exhibited about 4% higher compressive strength than control cement paste, while the HVS cement paste containing 70% slag maintained the similar compressive strength to control cement paste. However, about 9% and 37% reduction in compressive strength in HVS cement pastes is observed due to use of 80% and 90% slag, respectively. The high volume slag-fly ash (HVSFA) cement pastes containing total slag and fly ash content of 60% exhibited about 5%-16% higher compressive strength than control cement paste. However, significant reduction in compressive strength is observed in higher slag-fly ash blends with increasing in fly ash contents. Results also show that the addition of 1-4% NS improves the compressive strength of HVS cement paste containing 70% slag by about 9-24%. However, at higher slag contents of 80% and 90% this improvement is even higher e.g. 11-29% and 17-41%, respectively. The NS addition also improves the compressive strength by about 1-59% and 5-21% in high volume slag-fly ash cement pastes containing 21% fly ash+49%slag and 24% fly ash+56%slag, respectively. The thermogravimetric analysis (TGA) results confirm the reduction of calcium hydroxide (CH) in HVS/HVSFA pastes containing NS indicating the formation of additional calcium silicate hydrate (CSH) gels in the system. By combining slag, fly ash and NS in high volumes e.g. 70-80%, the carbon footprint of cement paste is reduced by 66-76% while maintains the similar compressive strength of control cement paste. Keywords: high volume slag, nanosilica, compressive strength, TGA, high volume slag-fly ash blend, CO2 emission.


Materials ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3344 ◽  
Author(s):  
Zhiyuan Zhou ◽  
Massoud Sofi ◽  
Elisa Lumantarna ◽  
Rackel San Nicolas ◽  
Gideon Hadi Kusuma ◽  
...  

To address sustainability issues by facilitating the use of high-volume fly ash (HVFA) concrete in industry, this paper investigates the early age hydration properties of HVFA binders in concrete and the correlation between hydration properties and compressive strengths of the cement pastes. A new method of calculating the chemically bound water of HVFA binders was used and validated. Fly ash (FA) types used in this study were sourced from Indonesia and Australia for comparison. The water to binder (w/b) ratio was 0.4 and FA replacement levels were 40%, 50% and 60% by weight. Isothermal calorimetry tests were conducted to study the heat of hydration which was further converted to the adiabatic temperature rise. Thermo-gravimetric analysis (TGA) was employed to explore the chemically bound water (WB) of the binders. The results showed that Australian FA pastes had higher heat of hydration, adiabatic temperature rise, WB and compressive strength compared to Indonesian FA pastes. The new method of calculating chemically bound water can be successfully applied to HVFA binders. Linear correlation could be found between the WB and compressive strength.


Sign in / Sign up

Export Citation Format

Share Document