scholarly journals Investigation of the TeO2/GeO2 Ratio on the Spectroscopic Properties of Eu3+-Doped Oxide Glasses for Optical Fiber Application

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 117
Author(s):  
Magdalena Lesniak ◽  
Jakub Zeid ◽  
Bartłomiej Starzyk ◽  
Marcin Kochanowicz ◽  
Marta Kuwik ◽  
...  

This study presented an analysis of the TeO2/GeO2 molar ratio in an oxide glass system. A family of melt-quenched glasses with the range of 0–35 mol% of GeO2 has been characterized by using DSC, Raman, MIR, refractive index, PLE, PL spectra, and time-resolved spectral measurements. The increase in the content of germanium oxide caused an increase in the transition temperature but a decrease in the refractive index. The photoluminescence spectra of europium ions were examined under the excitation of 465 nm, corresponding to 7F0 → 5D2 transition. The PSB (phonon sidebands) analysis was carried out to determine the phonon energy of the glass hosts. It was reported that the red (5D0 → 7F2) to orange (5D0 → 7F1) fluorescence intensity ratio for Eu3+ ions decreased from 4.49 (Te0Ge) to 3.33 (Te15Ge) and showed a constant increase from 4.58 (Te20Ge) to 4.88 (Te35Ge). These optical features were explained in structural studies, especially changes in the coordination of [4]Ge to [6]Ge. The most extended lifetime was reported for the Eu3+ doped glass with the highest content of GeO2. This glass was successfully used for the drawing of optical fiber.

Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4494
Author(s):  
Xinhai Zhang ◽  
Qiuling Chen ◽  
Shouhua Zhang

In this study, for the first time, diamagnetic 5d0 Ta5+ ions and Ta2O5 nanocrystals were utilized to enhance the structural, mechanical, magnetic, and radiation shielding of heavy metal oxide glasses. Transparent Ta2O5 nanocrystal-doped heavy metal oxide glasses were obtained, and the embedded Ta2O5 nanocrystals had sizes ranging from 20 to 30 nm. The structural analysis of the Ta2O5 nanocrystal displays the transformation from hexagonal to orthorhombic Ta2O5. Structures of doped glasses were studied through X-ray diffraction and infrared and Raman spectra, which reveal that Ta2O5 exists in highly doped glass as TaO6 octahedral units, acting as a network modifier. Ta5+ ions strengthened the network connectivity of 1–5% Ta2O5-doped glasses, but Ta5+ acted as a network modifier in a 10% doped sample and changed the frame coordination units of the glass. All Ta2O5-doped glasses exhibited improved Vicker’s hardness, magnetization (9.53 × 10−6 emu/mol), and radiation shielding behaviors (RPE% = 96–98.8%, MAC = 32.012 cm2/g, MFP = 5.02 cm, HVL = 0.0035–3.322 cm, and Zeff = 30.5) due to the increase in density and polarizability of the Ta2O5 nanocrystals.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4746
Author(s):  
Marta Kuwik ◽  
Joanna Pisarska ◽  
Wojciech A. Pisarski

The effect of oxide modifiers on multiple properties (structural and spectroscopic) of phosphate glasses with molar composition 60P2O5-(10−x)Ga2O3-30MO-xEu2O3 and 60P2O5-(10−y)Ga2O3-30MO-yEr2O3 (where M = Ca, Sr, Ba; x = 0, 0.5; y = 0, 1) were systematically examined and discussed. The local structure of systems was evidenced by the infrared (IR-ATR) and Raman spectroscopic techniques. The spectroscopic behaviors of the studied glass systems were determined based on analysis of recorded spectra (excitation and emission) as well as luminescence decay curves. Intense red and near-infrared emissions (1.5 μm) were observed for samples doped with Eu3+ and Er3+ ions, respectively. It was found that the value of fluorescence intensity ratio R/O related to 5D0→7F2 (red) and 5D0→7F1 (orange) transition of Eu3+ ions depends on the oxide modifiers MO in the glass host. However, no clear influence of glass modifiers on the luminescence linewidth (FWHM) was observed for phosphate systems doped with Er3+ ions. Moreover, the 5D0 and 4I13/2 luminescence lifetimes of Eu3+ and Er3+ ions increase with the increasing ionic radius of M2+ (M = Ca, Sr, Ba) in the host matrix. The obtained results suggest the applicability of the phosphate glasses with oxide modifiers as potential red and near-infrared photoluminescent materials in photonic devices.


2021 ◽  
Vol 1879 (3) ◽  
pp. 032077
Author(s):  
Maher Khaleel Ibrahim ◽  
Shehab A Kadhim ◽  
Nabeil Ibrahim Fawaz

2003 ◽  
Vol 20 (3) ◽  
pp. 408-410 ◽  
Author(s):  
Dai Neng-Li ◽  
Hu Li-Li ◽  
Dai Shi-Xun ◽  
Yang Jian-Hu ◽  
Lin Ao-Xiang

Photonics ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 199
Author(s):  
Yu-Cheng Lin ◽  
Liang-Yü Chen

The generation of lossy mode resonances (LMR) with a metallic oxide film deposited on an optical fiber has attracted the attention of many applications. However, an LMR-based optical fiber sensor is frangible, and therefore it does not allow control of the temperature and is not suited to mass production. This paper aims to develop a temperature-controlled lossy mode resonance (TC-LMR) sensor on an optical planar waveguide with an active temperature control function in which an ITO film is not only used as the LMR resonance but also to provide the heating function to achieve the benefits of compact size and active temperature control. A simple flat model about the heat transfer mechanism is proposed to determine the heating time constant for the applied voltages. The TC-LMR sensor is evaluated experimentally for refractive index measurement using a glycerol solution. The heating temperature functions relative to the controlled voltages for water and glycerol are obtained to verify the performance of the TC-LMR sensor. The TC-LMR sensor is a valuable sensing device that can be used in clinical testing and point of care for programming heating with precise temperature control.


2000 ◽  
Vol 39 (18) ◽  
pp. 3050 ◽  
Author(s):  
Scott A. Wade ◽  
Stephen F. Collins ◽  
Kenneth T. V. Grattan ◽  
Gregory W. Baxter

Sign in / Sign up

Export Citation Format

Share Document