scholarly journals Production, Mechanical Properties and Biomedical Characterization of ZrTi-Based Bulk Metallic Glasses in Comparison with 316L Stainless Steel and Ti6Al4V Alloy

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 252
Author(s):  
Mariusz Hasiak ◽  
Beata Sobieszczańska ◽  
Amadeusz Łaszcz ◽  
Michał Biały ◽  
Jacek Chęcmanowski ◽  
...  

Microstructure, mechanical properties, corrosion resistance, and biocompatibility were studied for rapidly cooled 3 mm rods of Zr40Ti15Cu10Ni10Be25, Zr50Ti5Cu10Ni10Be25, and Zr40Ti15Cu10Ni5Si5Be25 (at.%) alloys, as well as for the reference 316L stainless steel and Ti-based Ti6Al4V alloy. Microstructure investigations confirm that Zr-based bulk metallic samples exhibit a glassy structure with minor fractions of crystalline phases. The nanoindentation tests carried out for all investigated composite materials allowed us to determine the mechanical parameters of individual phases observed in the samples. The instrumental hardness and elastic to total deformation energy ratio for every single phase observed in the manufactured Zr-based materials are higher than for the reference materials (316L stainless steel and Ti6Al4V alloy). A scratch tester used to determine the wear behavior of manufactured samples and reference materials revealed the effect of microstructure on mechanical parameters such as residual depth, friction force, and coefficient of friction. Electrochemical investigations in simulated body fluid performed up to 120 h show better or comparable corrosion resistance of Zr-based bulk metallic glasses in comparison with 316L stainless steel and Ti6Al4V alloy. The fibroblasts viability studies confirm the good biocompatibility of the produced materials. All obtained results show that fabricated biocompatible Zr-based materials are promising candidates for biomedical implants that require enhanced mechanical properties.

2012 ◽  
Vol 503-504 ◽  
pp. 552-555 ◽  
Author(s):  
Xia Yang ◽  
Ying Long Bai ◽  
Meng Xu ◽  
Shi Ju Guo

A new method to produce powder metallurgy (P/M) 316L stainless steel matrix composite by pressureless infiltrating Cu-10Sn alloy was studied. The effect of various compaction pressures and infiltrating temperatures on the microstructure, mechanical properties and corrosion resistance was investigated. The results show that high density P/M 316L stainless steel matrix composite could be achieved by infiltration. A maximum relative density of 98% was achieved, provided that the porosity of the skeleton was controlled at 18%~22%. After infiltration, hardness of the samples increased from 49 HRB to 89 HRB. Moreover, the critical corrosion potential reached -212 mV, close to the level of as cast 316L stainless steel. The hardness of infiltrated composite of the same density decreased with increase in initial skeleton density. It was necessary to prevent the egregious grain growth while the infiltrating temperature was too high.


2021 ◽  
Vol 21 (2) ◽  
pp. 178
Author(s):  
I Nyoman Jujur ◽  
Sri Endah Susilowati ◽  
Seto Roseno ◽  
Agus Hadi Santosa Wargadipura

To improve mechanical properties, especially elongation, of as-cast medical grade 316L stainless steel, niobium (Nb) was introduced into the alloys, followed by solution heat treatment. Alloying was performed using a 250 kg air induction melting furnace with duplex raw materials and ferronickel. Heat treatment using a solution at 1040 oC, with a holding time of 45 minutes, and water quenching was used. The sample was tested using hardness and ultimate tensile machines. Corrosion tests with simulated body fluids were carried out using media with similar corrosion conditions to human blood. Microstructure observations were performed optically. The results show that the addition of Nb increases the hardness of medical grade 316L stainless steel by 6% compared to the unalloyed steel, both before and after heat treatment. The addition of Nb increases the tensile strength by 8% compared to non-heat treated steel and increases the elongation before and after heat treatment by 8% and 5%, respectively. However, the corrosion rate of the material with Nb is higher than without the addition of Nb. Nb as a carbide former improves the mechanical properties of medical grade 316L stainless steel but adversely affects its corrosion resistance


2015 ◽  
Vol 1114 ◽  
pp. 258-265 ◽  
Author(s):  
Diana Maria Vrânceanu ◽  
Mihai Tarcolea ◽  
Ana Iulia Gherghilescu ◽  
Florin Miculescu ◽  
Mihai Cosmin Cotrut

Typical applications of metallic dental materials include metal-ceramic restorations, dental implants or orthodontic systems. Due to their contact with human tissues, corrosion resistance is one of the main requirements for dental materials. In the present paper, the corrosion behaviour in Fusayama Meyer artificial saliva solution (pH=5.2) on a selection of four different metallic dental materials (316 L steel, Au based alloy, cp-Ti, Ti6Al4V alloy) currently used in dentistry were investigated. The metallic dental materials have been investigated in terms of electrochemical analysis, chemical composition, morphology before and after corrosion, wettability and roughness. The results showed a hydrophilic behaviour in the case of Au based alloy, cp-Ti and Ti6Al4V alloy, and hydrophobic for 316L stainless steel. Considering the main electrochemical parameters, the cp-Ti alloy exhibited better corrosion resistance in artificial saliva with pH=5.2, followed by Au based alloy, Ti6Al4V alloy and 316L stainless steel. The main objective of the present paper was to evaluate the corrosion behaviour, as in important factor in the selection of metallic materials used in dentistry.


Sign in / Sign up

Export Citation Format

Share Document