scholarly journals FEM Analysis as a Tool to Study the Behavior of Methacrylate Adhesive in a Full-Scale Steel-Steel Shear Joint

Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 330
Author(s):  
Marta Kałuża ◽  
Jacek Hulimka ◽  
Arkadiusz Bula

The use of adhesive to joint structural elements, despite many advantages of this technology, is not a method commonly used in engineering practice, especially in construction. This is mainly due to the poor recognition of the behavior, both in terms of testing and analysis, of joints made on a scale similar to the actual elements of building structures. Therefore, this paper presents the results of model tests and then numerical analyses of adhesively bonded joints made of high-strength steel elements in a full-scale (double-lap joint). In order to properly model the adhesive connection, material tests of the methacrylate adhesive were performed in the field of tensile, shear (in two versions: single lap joint test and thick adherent shear test) and bond properties. Comparison of the results of the model and numerical tests showed very good agreement in terms of the measurable values, which makes it possible to consider the results obtained in the adhesive layer as reliable (not directly measurable in model tests). In particular, the distribution of stresses inside the adhesive layer, the range of plastic zones and areas of loss of adhesion are presented and discussed. The results indicate the possibility of a reliable representation of the behavior of adhesively bonded joints of high-strength steel, thus providing a tool for the analysis of semirigid adhesive in large-size joints.

1981 ◽  
Vol 48 (2) ◽  
pp. 331-338 ◽  
Author(s):  
F. Delale ◽  
F. Erdogan

In this paper an adhesively bonded lap joint is analyzed by assuming that the adherends are elastic and the adhesive is linearly viscoelastic. After formulating the general problem a specific example for two identical adherends bonded through a three parameter viscoelastic solid adhesive is considered. The standard Laplace transform technique is used to solve the problem. The stress distribution in the adhesive layer is calculated for three different external loads namely, membrane loading, bending, and transverse shear loading. The results indicate that the peak value of the normal stress in the adhesive is not only consistently higher than the corresponding shear stress but also decays slower.


2013 ◽  
Vol 467 ◽  
pp. 332-337
Author(s):  
Xiao Cong He

This paper describes some finite element combinations to analyse the mechanical behaviour of bonded joints. In finite element models five layers of solid elements were used across the adhesive layer in order to increase the accuracy of the results. The finite elements were refined gradually in steps from adherends to adhesive layer. In these models, most of the adherends and adhesive were modeled using solid brick elements but some solid triangular prism elements were used for a smooth transition. Comparisons are performed between different types of first-order element combinations in order to find a suitable model to predict the mechanical behaviour of adhesively bonded joints.


Materials ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2403 ◽  
Author(s):  
Shiuh-Chuan Her ◽  
Cheng-Feng Chan

The use of adhesively bonded joints in place of traditional joining techniques such as bolted or rivet joints is becoming greatly popular in recent years. Interfacial stress in the adhesive is critical to the strength of adhesively bonded joints. It is necessary to predict the interfacial stresses accurately to ensure the safety of joints. In this work, an analytical model is explicitly presented to evaluate the stresses in a double lap joint. The equilibrium equations in the adhesive overlap region are derived on the basis of elasticity theory. The governing equations are presented in terms of shear and peel stresses in the adhesive. Analytical solutions are derived for the shear and peel stresses, which are considered to be the main reason for the failure of the double lap joint. To verify the analytical solutions, the finite element method is conducted using the commercial package ANSYS. Results from the analytical solution agree well with finite element results and numerical investigations available in the literature. The effect of the adhesive thickness, shear modulus, adherend Young’s modulus and bonding length on the shear and peel stresses in the adhesive of the double lap joint are studied. Numerical results demonstrate that both the maximum shear and peel stress occur at both ends of the bonding region. The maximum values of the shear and peel stresses increase as the adhesive thickness decreases and as the adhesive shear modulus increases provided that the adhesive thickness is sufficiently small. The simplicity and capability to obtain analytical expressions of the shear and peel stresses for double lap adhesive bonded joints makes the proposed analytical model applicable for the stress analysis and preliminary structural design.


2012 ◽  
Vol 166-169 ◽  
pp. 1904-1907
Author(s):  
Min You ◽  
Chun Zhi Mei ◽  
Wen Jun Liu ◽  
Jing Rong Hu ◽  
Ling Wu

The effect of the temperature and immersed time of the alkali solution on the impact toughness of the adhesively bonded steel single lap joint under impact loading is studied using the experimental method. The results obtained show that the impact toughness of the specimen increased when the immersed time increased then it decreased as it beyond 3 days. When the immersed time is longer than 72 h, the higher the temperature is, the lower the impact toughness of the joint. The moisture absorption of the adhesive layer with the immersed time was also investigated and it was found that there is a relationship to the impact toughness of the adhesively bonded single lap joint. The epoxy adhesive layer was analyzed with FT-IR and it was found that the hydroxyl enhanced and bonding strength may increase after 72 h immersed in alkali solution.


2005 ◽  
Vol 13 (4) ◽  
pp. 359-370 ◽  
Author(s):  
Makoto Imanaka ◽  
Makoto Taniguchi ◽  
Tatuyuki Hamano ◽  
Masaki Kimoto

An estimation method of fatigue strength of adhesively bonded joints with various stress triaxialities in the adhesive layer has been proposed based on a damage evolution model for high cycle fatigue. To realize various triaxial stress states, fatigue test was conducted for adhesively bonded butt and scarf joints with various scarf angles bonded by a rubber-modified epoxy adhesive. An equation for estimating the damage evolution in the adhesive layer of the butt and scarf joints was derived from the damage model, where undefined parameters in the equation were determined by comparing the experimentally obtained damage evolution curves of the butt joints with the estimated damage evolution curves. Furthermore, an equation for the estimation of fatigue strength was derived under the assumption that fatigue failure occurs when the damage variable reaches to a critical value. When compared the experimental S-N data of scarf joints with the estimated ones, the estimated fatigue strengths agree well with the experimental data with various scarf angles. This finding suggests that the CDM model is applicable for estimating fatigue strength of adhesively bonded joints with different stress triaxialities.


2021 ◽  
pp. 83-95
Author(s):  
Francesco Marchione

The adhesive technique is observing a considerable increase in applications in various fields. Unlike traditional joining methods, this technology allows the stress peaks and the weight of the resulting structure to be reduced. Adhesive joints during their service life not only undergo mechanical but also thermal stresses. The thermal compatibility between the adhesive and the adherents used is a fundamental aspect to consider in the design phase. This paper reports on and analyses the results obtained from a linear Finite Element Method (FEM) simulation for a hybrid adhesive joint, as the thickness and characteristics of the adhesive layer vary. An analytical solution for adhesive free joints is presented according to both beam and plate theories. The analytical and numerical results, in case of no adhesive, are in good agreement with good approximation. The introduction of the adhesive layer allows to obtain higher displacement values than in the adhesive-free configuration. The increase in displacement and therefore in ductility confirms the effectiveness of the adhesive joint for real applications.


2000 ◽  
Author(s):  
Iqbal Anwar ◽  
Golam Newaz

Abstract A computational intensive study was performed to assess an efficient way to model adhesively bonded glass fiber reinforced composite joints in automotive applications. Three different finite element modeling techniques had been implemented. First, adhesive was represented by 1D-spring elements. Spring stiffness was calculated from adhesive property. This model is inadequate to assess stresses developed in the adhesive layer directly. So adhesive was modeled with 2D elements for better assessment of state of stress in the adhesive and the substrate. Both the model provide limit load, but crack initiation and failure of the bond can not be captured. The third approach adopted was the nodal failure model. In the nodal failure model, to understand the failure of adhesively bonded joints, bond strength had been specified to the interface nodes of the composite substrate. Combined failure criteria had been used. Cracks propagated and interface debonded when interface stress exceeded the failure limit. Finite element model results compared well with the experimental data. This modeling approach was later adopted for dynamic modeling of adhesively bonded joints, which shows promise.


2011 ◽  
Vol 189-193 ◽  
pp. 3427-3430
Author(s):  
Xiao Cong He

This paper deals with the stress distribution in adhesively bonded joints with rubbery adhesives. The 3-D finite element analysis (FEA) software was used to model the joint and predict the stress distribution along the whole joint. The FEA results indicated that there are stress discontinuities existing in the stress distribution within the adhesive layer and adherends at the lower interface and the upper interface of the boded section for most of the stress components. The FEA results also show that the stress field in the whole joint is dominated by the normal stresses components S11, S33 and the shear stress component S13. The features and variations of these critical stresses components are discussed.


Sign in / Sign up

Export Citation Format

Share Document