scholarly journals Transition Metal Dichalcogenides (TMDC)-Based Nanozymes for Biosensing and Therapeutic Applications

Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 337
Author(s):  
Dario Presutti ◽  
Tarun Agarwal ◽  
Atefeh Zarepour ◽  
Nehar Celikkin ◽  
Sara Hooshmand ◽  
...  

Nanozymes, a type of nanomaterial with enzyme-like properties, are a promising alternative to natural enzymes. In particular, transition metal dichalcogenides (TMDCs, with the general formula MX2, where M represents a transition metal and X is a chalcogen element)-based nanozymes have demonstrated exceptional potential in the healthcare and diagnostic sectors. TMDCs have different enzymatic properties due to their unique nano-architecture, high surface area, and semiconducting properties with tunable band gaps. Furthermore, the compatibility of TMDCs with various chemical or physical modification strategies provide a simple and scalable way to engineer and control their enzymatic activity. Here, we discuss recent advances made with TMDC-based nanozymes for biosensing and therapeutic applications. We also discuss their synthesis strategies, various enzymatic properties, current challenges, and the outlook for future developments in this field.

2021 ◽  
Vol 9 ◽  
Author(s):  
Sanggon Kim ◽  
Jacob Brady ◽  
Faraj Al-Badani ◽  
Sooyoun Yu ◽  
Joseph Hart ◽  
...  

Significant scientific efforts have been made to mimic and potentially supersede the mammalian nose using artificial noses based on arrays of individual cross-sensitive gas sensors over the past couple decades. To this end, thousands of research articles have been published regarding the design of gas sensor arrays to function as artificial noses. Nanoengineered materials possessing high surface area for enhanced reaction kinetics and uniquely tunable optical, electronic, and optoelectronic properties have been extensively used as gas sensing materials in single gas sensors and sensor arrays. Therefore, nanoengineered materials address some of the shortcomings in sensitivity and selectivity inherent in microscale and macroscale materials for chemical sensors. In this article, the fundamental gas sensing mechanisms are briefly reviewed for each material class and sensing modality (electrical, optical, optoelectronic), followed by a survey and review of the various strategies for engineering or functionalizing these nanomaterials to improve their gas sensing selectivity, sensitivity and other measures of gas sensing performance. Specifically, one major focus of this review is on nanoscale materials and nanoengineering approaches for semiconducting metal oxides, transition metal dichalcogenides, carbonaceous nanomaterials, conducting polymers, and others as used in single gas sensors or sensor arrays for electrical sensing modality. Additionally, this review discusses the various nano-enabled techniques and materials of optical gas detection modality, including photonic crystals, surface plasmonic sensing, and nanoscale waveguides. Strategies for improving or tuning the sensitivity and selectivity of materials toward different gases are given priority due to the importance of having cross-sensitivity and selectivity toward various analytes in designing an effective artificial nose. Furthermore, optoelectrical sensing, which has to date not served as a common sensing modality, is also reviewed to highlight potential research directions. We close with some perspective on the future development of artificial noses which utilize optical and electrical sensing modalities, with additional focus on the less researched optoelectronic sensing modality.


2021 ◽  
Vol 103 (11) ◽  
Author(s):  
Carmem M. Gilardoni ◽  
Freddie Hendriks ◽  
Caspar H. van der Wal ◽  
Marcos H. D. Guimarães

2019 ◽  
Vol 9 (23) ◽  
pp. 5035 ◽  
Author(s):  
Wenwu Guo ◽  
Quyet Van Le ◽  
Ha Huu Do ◽  
Amirhossein Hasani ◽  
Mahider Tekalgne ◽  
...  

Transition metal dichalcogenides (TMDs) have been considered as one of the most promising electrocatalysts for the hydrogen evolution reaction (HER). Many studies have demonstrated the feasibility of significant HER performance improvement of TMDs by constructing composite materials with Ni-based compounds. In this work, we prepared Ni3Se4@MoSe2 composites as electrocatalysts for the HER by growing in situ MoSe2 on the surface of Ni3Se4 nanosheets. Electrochemical measurements revealed that Ni3Se4@MoSe2 nanohybrids are highly active and durable during the HER process, which exhibits a low onset overpotential (145 mV) and Tafel slope (65 mV/dec), resulting in enhanced HER performance compared to pristine MoSe2 nanosheets. The enhanced HER catalytic activity is ascribed to the high surface area of Ni3Se4 nanosheets, which can both efficiently prevent the agglomeration issue of MoSe2 nanosheets and create more catalytic edge sites, hence accelerate electron transfer between MoSe2 and the working electrode in the HER. This approach provides an effective pathway for catalytic enhancement of MoSe2 electrocatalysts and can be applied for other TMD electrocatalysts.


2018 ◽  
Author(s):  
Srimanta Pakhira ◽  
Jose Mendoza-Cortes

<div>Covalent organic frameworks (COFs) have emerged as an important class of nano-porous crystalline materials with many potential applications. They are intriguing platforms for the design of porous skeletons with special functionality at the molecular level. However, despite their extraordinary properties, it is difficult to control their electronic properties, thus hindering the potential implementation in electronic devices. A new form of nanoporous material, COFs intercalated with first row transition metal is proposed to address this fundamental drawback - the lack of electronic tunability. Using first-principles calculations, we have designed 31 new COF materials <i>in-silico</i> by intercalating all of the first row transition metals (TMs) with boroxine-linked and triazine-linked COFs: COF-TM-x (where TM=Sc-Zn and x=3-5). This is a significant addition considering that only 187 experimentally COFs structures has been reported and characterized so far. We have investigated their structure and electronic properties. Specifically, we predict that COF's band gap and density of states (DOSs) can be controlled by intercalating first row transition metal atoms (TM: Sc - Zn) and fine tuned by the concentration of TMs. We also found that the $d$-subshell electron density of the TMs plays the main role in determining the electronic properties of the COFs. Thus intercalated-COFs provide a new strategy to control the electronic properties of materials within a porous network. This work opens up new avenues for the design of TM-intercalated materials with promising future applications in nanoporous electronic devices, where a high surface area coupled with fine-tuned electronic properties are desired.</div>


ACS Nano ◽  
2021 ◽  
Author(s):  
Miao Zhang ◽  
Martina Lihter ◽  
Tzu-Heng Chen ◽  
Michal Macha ◽  
Archith Rayabharam ◽  
...  

Author(s):  
Yoobeen Lee ◽  
Jin Won Jung ◽  
Jin Seok Lee

The reduction of intrinsic defects, including vacancies and grain boundaries, remains one of the greatest challenges to produce high-performance transition metal dichalcogenides (TMDCs) electronic systems. A deeper comprehension of the...


Sign in / Sign up

Export Citation Format

Share Document