scholarly journals Development of VUMAT and VUHARD Subroutines for Simulating the Dynamic Mechanical Properties of Additively Manufactured Parts

Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 372
Author(s):  
Amos Muiruri ◽  
Maina Maringa ◽  
Willie du Preez

Numerical modelling and simulation can be useful tools in qualification of additive manufactured parts for use in demanding structural applications. The use of these tools in predicting the mechanical properties and field performance of additive manufactured parts can be of great advantage. Modelling and simulation of non-linear material behaviour requires development and implementation of constitutive models in finite element analysis software. This paper documents the implementation and verification process of a microstructure-variable based model for DMLS Ti6Al4V (ELI) in two separate ABAQUS/Explicit subroutines, VUMAT and VUHARD, available for defining the yield surface and plastic deformation of materials. The verification process of the implemented subroutines was conducted for single and multiple element tests with varying prescribed loading conditions. The simulation results obtained were then compared with the analytical solutions at the same conditions of strain rates and temperatures. This comparison showed that both developed subroutines were accurate in predicting the flow stress of various forms of DMLS Ti6Al4V (ELI) under different conditions of strain rates and temperatures.

Author(s):  
Alejandro Enfedaque ◽  
Marcos G. Alberti ◽  
Jaime C. Gálvez ◽  
Pedro Cabanas

Fibre reinforced concrete (FRC) has become an alternative for structural applications due its outstanding mechanical properties. The appearance of new types of fibres and the fibre cocktails that can be configured mixing them has created FRC that clearly exceed the minimum mechanical properties required in the standards. Consequently, in order to take full advantage of the contribution of the fibres in construction projects, it is of great interest to have constitutive models that simulate the behaviour of the materials. This study aimed to simulate the fracture behaviour of five types of FRC, three with steel hooked fibres, one with a combination of two types of steel fibres and one with a combination of polyolefin fibres and two types of steel fibres, by means of an inverse analysis based on the cohesive crack approach. The results of the numerical simulations defined the softening functions of each FRC formulation and have pointed out the synergies that are created through use of fibre cocktails. The information obtained might suppose a remarkable advance for designers using high-performance FRC in structural elements.


2019 ◽  
Vol 39 (6) ◽  
pp. 508-514
Author(s):  
Yannan He ◽  
Zhiqiang Yu

Abstract The thermal and dynamic mechanical properties of epoxy composites filled with zirconium diboride/nano-alumina (ZrB2/Al2O3) multiphase particles were investigated by means of differential scanning calorimetry, dynamic thermo-mechanical analysis, and numerical simulation. ZrB2/Al2O3 particles were surface organic functional modified by γ-glycidoxypropyltrimethoxysilane for the improvement of their dispersity in epoxy matrix. The results indicated that the curing exotherm of epoxy resin decreased significantly due to the addition of ZrB2/Al2O3 multiphase particles. In comparison to the composites filled with unmodified particles, the modified multiphase particles made the corresponding filling composites exhibit lower curing reaction heat, lower loss modulus, and higher storage modulus. Generally speaking, the composites filled with 5 wt% modified multiphase particles presented the best thermal stability and thermo-mechanical properties due to the better filler-matrix interfacial compatibility and the uniform dispersity of modified particles. Finite element analysis also suggested that the introduction of modified ZrB2/Al2O3 multiphase particles increased the stiffness of the corresponding composites.


Author(s):  
Jun-Zhong Liu ◽  
Jin-Yu Xu ◽  
Xiao-Cong Lv ◽  
De-Hui Zhao ◽  
Bing-Lin Leng

AbstractIn order to investigate rock dynamic mechanical properties of amphibolites, sericite-quartz schist and sandstone under the different strain rates varying from 30 s


Polymer ◽  
2005 ◽  
Vol 46 (10) ◽  
pp. 3528-3534 ◽  
Author(s):  
Xiangyang Hao ◽  
Guosheng Gai ◽  
Fangyun Lu ◽  
Xijin Zhao ◽  
Yihe Zhang ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1489
Author(s):  
Jian Ma ◽  
Meini Yuan ◽  
Lirong Zheng ◽  
Zeyuan Wei ◽  
Kai Wang

The Ti–Al3Ti–Al laminated composites with different Al contents were prepared by vacuum hot pressing sintering technology. The effects of Al content on the dynamic mechanical properties of the composites were studied using the combination of Split Hopkinson Pressure Bar experiment and finite element analysis. The results showed that different Al content changes the fracture mode of the composites. The laminated composites without Al have higher brittleness and lower fracture strain. The Ti–Al3Ti–Al laminated composites containing 10–15%Al have better dynamic mechanical properties than those without Al, but the subsequent increase of Al content is not conducive to the improvement of strength. However, when the Al content in the specimen reaches 30%, the dynamic mechanical properties of the composites decrease, multi-crack phenomenon and relatively large strain occur, and the Al extruded from the layers fills the crack.


Author(s):  
Yiben Zhang ◽  
Lingyu Sun ◽  
Lijun Li ◽  
Taikun Wang ◽  
Yantao Wang

Metal-polymer hybrid (MPH) materials can integrate the excellent mechanical properties of metal and complex geometry formability of polymer into a single component, which has become an effective way of reducing the weight of automotive semi-structural components. For example, the hybrid steel/thermoplastic polymer has been applied in automotive front-end modules, bumper cross-beams and B-pillars due to its light weight, excellent strength and stiffness, good corrosion resistance and recycling, high integration and reasonable cost. These components are usually subjected to impact or crash loads and the strain rate effect should be taken into account. This paper aims to experimentally and numerically study the dynamic behavior of MPH materials at different strain rates and provide an accurate and efficient numerical model for crash simulation of vehicles with MPH components. Firstly, MPH specimens with high strength steel (HSS) and glass fiber-reinforced thermoplastic polymer (GFRTP) were fabricated by direct injection molding adhesion (DIMA) process. Then, the dynamic mechanical properties of MPH specimens under strain rates from 800 s−1 to 2000 s−1 were investigated by Split Hopkinson Pressure Bar (SHPB) experiments. Finally, a strain rate-dependent numerical model was established in ABAQUS software to simulate the dynamic behavior of MPH specimens and validated by experimental results. Three numerical approaches for modeling the interface between the two discrete material phases were considered and compared to examine the level of interaction between two constitute materials. Cohesive zone modeling technique at the interface which saved modeling and characterization time and showed adequate predictive capability proved to be generally applicable to the evaluation of structural concepts in an early vehicle development stage. This study provides a foundation for the future engineering application of HSS/GFRP hybrid materials and numerical models for automotive crash simulation.


Author(s):  
Xu Long ◽  
Minghui Mao ◽  
Changheng Lu ◽  
Ruiwen Li ◽  
Fengrui Jia

Great progress has been made in the dynamic mechanical properties of concrete which is usually assumed to be homogenous. In fact, concrete is a typical heterogeneous material, and the meso-scale structure with aggregates has a significant effect on its macroscopic mechanical properties of concrete. In this paper, concrete is regarded as a two-phase composite material, that is, a combination of aggregate inclusion and mortar matrix. To create the finite element (FE) models, the Monte Carlo method is used to place the aggregates as random inclusions into the mortar matrix of the cylindrical specimens. To validate the numerical simulations of such an inclusion-matrix model at high strain rates, the comparisons with experimental results using the split Hopkinson pressure bar are made and good agreement is achieved in terms of dynamic increasing factor. By performing more extensive FE predictions, the influences of aggregate size and content on the macroscopic dynamic properties (i.e., peak dynamic strength) of concrete materials subjected to high strain rates are further investigated based on the back-propagation (BP) artificial neural network method. It is found that the particle size of aggregate has little effect on the dynamic mechanical properties of concrete but the peak dynamic strength of concrete increases obviously with the content increase of aggregate. After detailed comparisons with FE simulations, machine learning predictions based on the BP algorithm show good applicability for predicting dynamic mechanical strength of concrete with different aggregate sizes and contents. Instead of FE analysis with complicated meso-scale aggregate pre-processing, time-consuming simulation and laborious post-processing, machine learning predictions reproduce the stress–strain curves of concrete materials under high strain rates and thus the constitutive behavior can be efficiently predicted.


Sign in / Sign up

Export Citation Format

Share Document