scholarly journals Influence of Different Device Structures on the Degradation for Trench-Gate SiC MOSFETs: Taking Avalanche Stress as an Example

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 457
Author(s):  
Zhaoxiang Wei ◽  
Hao Fu ◽  
Xiaowen Yan ◽  
Sheng Li ◽  
Long Zhang ◽  
...  

The variations in the degradation of electrical characteristics resulting from different device structures for trench-gate SiC metal-oxide-semiconductor field effect transistors (MOSFETs) are investigated in this work. Two types of the most advanced commercial trench products, which are the asymmetric trench SiC MOSFET and the double-trench SiC MOSFET, are chosen as the targeted devices. The discrepant degradation trends caused by the repetitive avalanche stress are monitored. For the double-trench device, the conduction characteristic improves while the gate-drain capacitance (Cgd) increases seriously. It is because positive charges are injected into the bottom gate oxide during the avalanche process, which are driven by the high oxide electronic field (Eox) and the high impact ionization rate (I.I.) there. Meanwhile, for the asymmetric trench SiC MOSFET, the I–V curve under the high gate bias condition and the Cgd remain relatively stable, while the trench bottom is well protected by the deep P+ well. However, it’s threshold voltage (Vth) decreases more obviously when compared with that of the double-trench device and the inclined channel suffers from more serious stress than the vertical channel. Positive charges are more easily injected into the inclined channel. The phenomena and the corresponding mechanisms are analyzed and proved by experiments and technology computer-aided design (TCAD) simulations.

2021 ◽  
Vol 11 (24) ◽  
pp. 12075
Author(s):  
Jee-Hun Jeong ◽  
Ogyun Seok ◽  
Ho-Jun Lee

A new analytical model to analyze and optimize the electrical characteristics of 4H-SiC trench-gate metal-oxide-semiconductor field-effect transistors (TMOSFETs) with a grounded bottom protection p-well (BPW) was proposed. The optimal BPW doping concentration (NBPW) was extracted by analytical modeling and a numerical technology computer-aided design (TCAD) simulation, in order to analyze the breakdown mechanisms for SiC TMOSFETs using BPW, while considering the electric field distribution at the edge of the trench gate. Our results showed that the optimal NBPW obtained by analytical modeling was almost identical to the simulation results. In addition, the reverse transfer capacitance (Cgd) values obtained from the analytical model correspond with the results of the TCAD simulation by approximately 86%; therefore, this model can predict the switching characteristics of the effect BPW regions.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 454
Author(s):  
You Wang ◽  
Yu Mao ◽  
Qizheng Ji ◽  
Ming Yang ◽  
Zhaonian Yang ◽  
...  

Gate-grounded tunnel field effect transistors (ggTFETs) are considered as basic electrostatic discharge (ESD) protection devices in TFET-integrated circuits. ESD test method of transmission line pulse is used to deeply analyze the current characteristics and working mechanism of Conventional TFET ESD impact. On this basis, a SiGe Source/Drain PNN (P+N+N+) tunnel field effect transistors (TFET) was proposed, which was simulated by Sentaurus technology computer aided design (TCAD) software. Simulation results showed that the trigger voltage of SiGe PNN TFET was 46.3% lower, and the failure current was 13.3% higher than Conventional TFET. After analyzing the simulation results, the parameters of the SiGe PNN TFET were optimized. The single current path of the SiGe PNN TFET was analyzed and explained in the case of gate grounding.


2021 ◽  
Vol 21 (8) ◽  
pp. 4252-4257
Author(s):  
Tae Jun Ahn ◽  
Yun Seop Yu

We investigated the effect of the interface trap charge in a monolithic three-dimensional inverter structure composing of JLFETs (M3DINV-JLFET), using the interface trap charge distribution extracted in the previous study. The effect of interface trap charge was compared with a conventional M3DINV composing of MOSFETs (M3DINV-MOSFETs) by technology computer-aided design simulation. When the interface trap charges in both M3DINV-JLFET and M3DINV-MOSFET are added, the threshold voltages, on-current levels, and subthreshold swings of both JLFETs and MOSFETs increase, decrease, and increase, respectively, and switching voltages and propagation delays of M3DINV are shifted and increased, respectively. However, since JLFET and MOSFET have different current paths of bulk and interface in channel, respectively, MOSFET is more affected by the interface trap, and M3DINV-JLFET has almost less effect of interface trap at different thickness of interlayer dielectric, compared to M3DINV-MOSFET.


2020 ◽  
Vol 10 (21) ◽  
pp. 7895
Author(s):  
Runze Chen ◽  
Lixin Wang ◽  
Hongkai Zhang ◽  
Mengyao Cui ◽  
Min Guo

The split gate resurf stepped oxide with highly doped epitaxial layer (HDSGRSO) UMOSFET has been proposed. The epitaxial layer of HDSGRSO u-shape metal oxide semiconductor field effect transistor (UMOSFET) has been divided into three parts: the upper epitaxial layer, the lower epitaxial layer and the middle epitaxial layer with higher doping concentration. The research shows that the reduced SURface field (RESURF) active has been enhanced due to the high doped epitaxial layer, which can modulate the electric field distribution and reduce the internal high electric field. Therefore, the HDGRSO UMOSFET has a higher breakdown voltage (BV), a lower on-state specific resistance (RSP) and a better figure of merit (FOM). According to the results of Technology Computer Aided Design (TCAD) simulations, the FOM (BV2/RSP) of HDSGRSO UMOSFET has been improved by 464%, and FOM (RSP × Qgd) of HDSGRSO UMOSFET has been reduced by 27.9% compared to the conventional structure, respectively, when the BV is 240 V. Furthermore, there is no extra special process required in this advanced fabrication procedure, which is relatively cost-effective and achievable.


Electronics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 282 ◽  
Author(s):  
Liang Dai ◽  
Weifeng Lü ◽  
Mi Lin

We investigate the effect of random dopant fluctuation (RDF)-induced variability in n-type junctionless (JL) dual-metal gate (DMG) fin field-effect transistors (FinFETs) using a 3D computer-aided design simulation. We show that the drain voltage (VDS) has a significant impact on the electrostatic integrity variability caused by RDF and is dependent on the ratio of gate lengths. The RDF-induced variability also increases as the length of control gate near the source decreases. Our simulations suggest that the proportion of the gate metal near the source to the entire gate should be greater than 0.5.


Sign in / Sign up

Export Citation Format

Share Document