scholarly journals Effect of Chromium on Microstructure and Oxidation Wear Behavior of High-Boron High-Speed Steel at Elevated Temperatures

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 557
Author(s):  
Pengjia Guo ◽  
Shengqiang Ma ◽  
Ming Jiao ◽  
Ping Lv ◽  
Jiandong Xing ◽  
...  

In order to investigate the effect of Cr content on the microstructures and oxidation wear properties of high-boron high-speed steel (HBHSS), so as to explore oxidation wear resistant materials (e.g., hot rollers), a scanning electron microscope, an X-ray diffractometer, an electron probe X-ray microanalysis and an oxidation wear test at elevated temperatures were employed to investigate worn surfaces and worn layers. The results showed that the addition of Cr resulted in the transformation of martensite into ferrite and pearlite, while the size of the grid morphology of borides in HBHSSs was refined. After oxidation wear, oxide scales were formed and the high-temperature oxidation wear resistance of HBHSSs was gradually improved with increased additions of Cr. Meanwhile, an interaction between temperature and load in HBHSSs during oxidation wear occurred, and the temperature had more influence on the oxidation wear properties of HBHSSs. SEM observations indicated that a uniform and compact oxide film of HBHSSs in the worn surface at elevated temperatures was generated on the worn surface, and the addition of Cr also reduced the thickness of oxides and inhibited the spallation of worn layers, which was attributed to improvements in microhardness and oxidation resistance of the matrix in HBHSSs. A synergistic effect of temperature and load in HBHSSs with various Cr additions may dominate the oxidation wear process and the formation and spallation of oxide films.

2015 ◽  
Vol 67 (2) ◽  
pp. 172-180 ◽  
Author(s):  
Mumin Sahin ◽  
Cenk Misirli ◽  
Dervis Özkan

Purpose – The purpose of this paper is to examine mechanical and metallurgical properties of AlTiN- and TiN-coates high-speed steel (HSS) materials in detail. Design/methodology/approach – In this study, HSS steel parts have been processed through machining and have been coated with AlTiN and TiN on physical vapour deposition workbench at approximately 6,500°C for 4 hours. Tensile strength, fatigue strength, hardness tests for AlTiN- and TiN-coated HSS samples have been performed; moreover, energy dispersive X-ray spectroscopy and X-ray diffraction analysis and microstructure analysis have been made by scanning electron microscopy. The obtained results have been compared with uncoated HSS components. Findings – It was found that tensile strength of TiAlN- and TiN-coated HSS parts is higher than that of uncoated HSS parts. Highest tensile strength has been obtained from TiN-coated HSS parts. Number of cycles for failure of TiAlN- and TiN-coated HSS parts is higher than that for HSS parts. Particularly TiN-coated HSS parts have the most valuable fatigue results. However, surface roughness of fatigue samples may cause notch effect. For this reason, surface roughness of coated HSS parts is compared with that of uncoated ones. While the average surface roughness (Ra) of the uncoated samples was in the range of 0.40 μm, that of the AlTiN- and TiN-coated samples was in the range of 0.60 and 0.80 μm, respectively. Research limitations/implications – It would be interesting to search different coatings for cutting tools. It could be the good idea for future work to concentrate on wear properties of tool materials. Practical implications – The detailed mechanical and metallurgical results can be used to assess the AlTiN and TiN coating applications in HSS materials. Originality/value – This paper provides information on mechanical and metallurgical behaviour of AlTiN- and TiN-coated HSS materials and offers practical help for researchers and scientists working in the coating area.


Alloy Digest ◽  
1980 ◽  
Vol 29 (8) ◽  

Abstract RED CUT COBALT steel is made by adding 5% cobalt to the conventional 18% tungsten -4% chromium-1% vanadium high-speed steel. Cobalt increases hot or red hardness and thus enables the tool to maintain a higher hardness at elevated temperatures. This steel is best adapted for hogging cuts or where the temperature of the cutting point of the tool in increased greatly. It is well adapted for tools to be used for reaming cast-iron engine cylinders, turning alloy steel or cast iron and cutting nonferrous alloys at high speeds. This datasheet provides information on composition, physical properties, and hardness as well as fracture toughness. It also includes information on forming, heat treating, and machining. Filing Code: TS-367. Producer or source: Teledyne Vasco.


2021 ◽  
Author(s):  
Mei Yang ◽  
Yishu Zhang ◽  
Haoxing You ◽  
Richard Smith ◽  
Richard D. Sisson

Abstract Selective laser melting (SLM) is an additive manufacturing technique that can be used to make the near-net-shape metal parts. M2 is a high-speed steel widely used in cutting tools, which is due to its high hardness of this steel. Conventionally, the hardening heat treatment process, including quenching and tempering, is conducted to achieve the high hardness for M2 wrought parts. It was debated if the hardening is needed for additively manufactured M2 parts. In the present work, the M2 steel part is fabricated by SLM. It is found that the hardness of as-fabricated M2 SLM parts is much lower than the hardened M2 wrought parts. The characterization was conducted including X-ray diffraction (XRD), optical microscopy, Scanning Electron Microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS) to investigate the microstructure evolution of as-fabricated, quenched, and tempered M2 SLM part. The M2 wrought part was heat-treated simultaneously with the SLM part for comparison. It was found the hardness of M2 SLM part after heat treatment is increased and comparable to the wrought part. Both quenched and tempered M2 SLM and wrought parts have the same microstructure, while the size of the carbides in the wrought part is larger than that in the SLM part.


2013 ◽  
Vol 594-595 ◽  
pp. 730-734
Author(s):  
Мazhyn Skakov ◽  
Bauyrzhan Rakhadilov ◽  
Gaukhar Karipbayeva

A Possibility of R6M5 High-Speed Steel Strengthening by Finishing Plasma Strengthening(FPS) Method to Application of Sic Thin Film Coatings were under Research. by Scanning Electronmicroscopy and X-Ray Analysis Conducted a Comparative Study of the Structure, Phase and Chemicalcomposition before and after Application of Sic Thin Film Coating of R6M5 High-Speed Steel Surfacelayer. it is Experimentally Stated, that the Coverage of Sic Applied Method FPS Consists of Fineglobular Shape at the Size of 100-300 Nm. Determined that the Microhardness of R6M5 Steel Surfaceafter Application Sic Coating Increased Almost to 2.5 Times Comparing to Original. it is Shown Thatthe Application of Sic Thin Film Coating by FPS Method is a Promising Highly Effective Method Ofcutting Tools Surface Strengthening Made from High Speed Steels.


2009 ◽  
Vol 75 ◽  
pp. 37-42
Author(s):  
P.L. Tam ◽  
Zhi Feng Zhou ◽  
P.W. Shum ◽  
K.Y. Li

Quaternary CrTiAlN hard coatings were deposited by closed field unbalanced magnetron sputtering ion plating technique onto steel substrates, and their structural, mechanical, and tribological properties after heat treatment in air at different temperatures (500-900 oC) were studied and compared by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), micro-indentation, and pin-on-disc (POD) tribometer, etc. The onset temperature of oxidation was determined by thermogravimetric analyser (TGA). The compositional depth profiles before and after the heat treatments were examined by X-ray photoelectron spectroscopy (XPS) in order to study the oxidation mechanism. The experimental results indicate that the CrTiAlN coatings have excellent oxidation resistance and thermal stability, and outperform the traditional hard coatings like TiN and TiAlN in terms of higher oxidation temperature, hardness, adhesion, and wear resistance. It is expected that the CrTiAlN coatings with superior properties should have better performance in dry high speed machining.


2015 ◽  
Vol 25 (2) ◽  
pp. 409-420 ◽  
Author(s):  
Yong-wei Yang ◽  
Han-guang Fu ◽  
Yong-ping Lei ◽  
Kai-ming Wang ◽  
Li-long Zhu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document