scholarly journals Study of the Layer-Type BST Thin Film with X-ray Diffraction and X-ray Photoelectron Spectroscopy

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 578
Author(s):  
Agata Lisińska-Czekaj ◽  
Dionizy Czekaj

In the present paper, results of X-ray photoelectron studies of electroceramic thin films of barium strontium titanate, Ba1−xSrxTiO3 (BST), composition deposited on stainless-steel substrates are presented. The thin films were prepared by the sol-gel method. A spin-coating deposition of BST layers with different chemical compositions was utilized so the layer-type structure of (0-2) connectivity was formed. After the deposition, the thin-film samples were heated in air atmosphere at temperature T = 700 °C for 1 h. The surfaces of BST thin films subjected to thermal treatment were studied by X-ray diffraction. X-ray diffraction measurements confirmed the perovskite-type phase for all grown thin-film samples. The oxidation states of the elements were examined by the X-ray photoelectron spectroscopy method. X-ray photoelectron spectroscopy survey spectra as well as high-resolution spectra (photo-peaks) of the main metallic elements, such as Ti, Ba, and Sr, were compared for the layer-type structures, differing in the deposition sequence of the barium strontium titanate layers constituting the BST thin film.

2017 ◽  
Vol 727 ◽  
pp. 942-946 ◽  
Author(s):  
Juan Li ◽  
Cong Chun Zhang ◽  
Yan Lei Wang ◽  
Yang Gao ◽  
Xiao Lin Zhao

Barium strontium titanate (BST) thin films with excellent dielectric properties are deposited by on-axis RF magnetron sputtering system. The effects of composition of the target and oxygen partial pressure on the microstructure of BST thin film have been investigated. The dielectric properties of the thin films are investigated. The results show that composition of BST thin film deposited with pure argon ambient by the target with 30atm% excess of Ba and Sr is stoichiometric. Perovskite phase can be observed in the thin film annealed in oxygen at 750 °C for 30 min. A metal-insulator-metal (MIM) capacitor is fabricated by microfabrication technique. The capacitance value at 2 GHz is 0.417 pF and 1.42 pF for 50 nm and 90 nm BST thin film respectively, and the leakage current density is 6×10-6 A/cm2 and 5.35×10-8 A/cm2 respectively.


2017 ◽  
Vol 56 (5) ◽  
pp. 055501
Author(s):  
Anouar Chaabani ◽  
Anouar Njeh ◽  
Wolfgang Donner ◽  
Andreas Klein ◽  
Mohamed Hédi Ben Ghozlen

2010 ◽  
Vol 152-153 ◽  
pp. 1013-1016
Author(s):  
Hong Wang ◽  
Jing Yang

Nanometer barium-strontium titanate based coated aluminum oxide (ABST) was prepared by the sol–gel method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectrophotometry (FTIR). Its application in speciation of Cr(III) and Cr(VI) from water were studied. The results showed that the nanometer barium-strontium titanate was immobilized on aluminum oxide firmly, becoming a new adsorbent. Two forms of chromium showed different exchange capacities at different pH values, viz. Cr (III) selectively retained at pH 10–13, whereas Cr (VI) retained at pH 1. Hence complete separation of the two forms of chromium is possible. Retained species were eluted with 5mL of 1 mol•L−1 HCl and 1 mol•L−1 NaOH. The Cr(III) and Cr(VI) concentration was measured by atomic absorption spectroscopy. The adsorbent had a promising prospect in the separation of Cr(III) and Cr(VI) in environment water.


2012 ◽  
Vol 734 ◽  
pp. 215-225 ◽  
Author(s):  
Sawsan A. Mahmoud ◽  
Emre Yassitepe ◽  
S. Ismat Shah

The rate of 1,4-dichlorobenzene (1,4-DCB) degradation in the aqueous phase was investigated under direct photolysis or photocatalysis in the presence of TiO2 thin film prepared by reactive sputtering using a metal Ti target and a reaction sputtering atmosphere of argon and oxygen. The prepared thin films were analyzed by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). XPS confirmed the presence of completely oxidized TiO2 films whereas XRD showed that the films contained a mixture of rutile and anatase phases with rutile being approximately 30% of the total volume. Two lamps, both of the same power but different wavelength range were employed as irradiation sources. Photocatalysis showed faster removal of 1,4-DCB as compared to direct photolysis. The complete degradation was attained using the freshly prepared TiO2 sample. The intermediate produced during the photocatalysis was benzoquinone. Photolysis using visible irradiation was relatively slower and both benzoquinone and hydroquinone were formed as intermediates. Higher initial degradation rates were observed when the same film was re-used, most probably due to the effect of washing of the TiO2 thin films surface with methanol.


2020 ◽  
Vol 5 (1) ◽  
pp. 11-20
Author(s):  
Rahmi Dewi ◽  
Krisman Krisman ◽  
Zulkarnaen Zulkarnaen ◽  
Rahmi Afrida Syahraini ◽  
TS Luqman Husein

A thin layer of Barium Strontium Titanate Ba0.15Sr0.85TiO3 (BST) was developed on a glass substrate using a sol-gel method with annealing temperatures and spin coating process at 3500 rpm for 30 seconds. The annealing temperature varied from 600oC, 650oC, and 700oC.  Characterization of optical properties was developed using UV-Vis spectroscopy to determine the energy bandgap. The values of the BST thin layer energy band at the annealing temperature were 3.55 eV, 3.32 eV, and 3.10 eV, respectively. The results indicate that the BST thin film was a semiconductor material.


Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 773 ◽  
Author(s):  
Tomohisa Tasaki ◽  
Satoko Takase ◽  
Youichi Shimizu

A sensitive an impedancemetric acetylene (C2H2) gas sensor device could be fabricated by using perovskite-type SmFeO3 thin-film as a sensor material. The uniform SmFeO3 thin-films were prepared by spin-coating and focusing on the effects of polymer precursor solutions. The prepared precursors and thin-films were characterized by means of thermal analysis, Fourier-transform infrared spectroscopy, ultraviolet–visible spectroscopy, X-ray diffraction analysis, scanning electron microscopy and X-ray photoelectron spectroscopy . It was found that particle growth and increase in homogeneity of the prepared thin-film could be accelerated by the addition of acetyl acetone (AcAc) as a coordination agent in the polymer precursor solution. Moreover, the highly crystallized thin-film-based sensor showed good response properties and stabilities to a low C2H2 concentration between 0.5 and 2.0 ppm.


2020 ◽  
Vol 7 (2) ◽  
pp. 1-11
Author(s):  
Hamed A. Gatea ◽  
Iqbal Nahi

"Barium strontium Titanate (BST) is a solid solution consist of BaTiO3 and SrTiO3 that mixed with suitable ratio. Barium strontium Titanate oxide (Ba0.8Sr0.2TiO3) thin films prepared by sol gel technique. Barium strontium Titanate thin films deposited on Si substrate and annealed at [400,500, 600 and 700] ºC. The characterization of BST films investigated by a different technique, the X-Ray Diffraction (XRD) and Scanning Electron Macroscopy (SEM) revealed the phases, crystal structure and surface topography of the films. XRD pattern shows tetragonal phase for Ba0.8Sr0.2TiO3 perovskite structure with many peaks for different plans. The films annealed at the different temperature that indicated intermediate phases on perovskite structure of Ba0.8Sr0.2TiO3.


2011 ◽  
Vol 415-417 ◽  
pp. 1964-1968 ◽  
Author(s):  
Li Ping Dai ◽  
Guo Jun Zhang ◽  
Shu Ya Wang ◽  
Zhi Qin Zhong

Subscript textReactive ion etching of barium strontium titanate (BST) thin films using an SF6/Ar plasma has been studied. BST surfaces before and after etching were analyzed by X-ray photoelectron spectroscopy to investigate the reaction ion etching mechanism, and chemical reactions had occurred between the F plasma and the Ba, Sr and Ti metal species. Fluorides of these metals were formed and some remained on the surface during the etching process. Ti can be removed completely by chemical reaction because the TiF4by-product is volatile. Minor quantities of Ti-F could still be detected by narrow scan X-ray photoelectron spectra, which was thought to be present in metal-oxy-fluoride(Metal-O-F). These species were investigated from O1sspectra, and a fluoride-rich surface was formed during etching because the high boiling point BaF2and SrF2residues are hard to remove. The etching rate was limited to 14.28nm/min. A 1-minute Ar/10 plasma physical sputtering was carried out for every 4 minutes of surface etching, which effectively removed remaining surface residue. Sequential chemical reaction and sputtered etching is an effective etching method for BST films.


2013 ◽  
Vol 566 ◽  
pp. 20-24
Author(s):  
Kotaro Takeda ◽  
Takuya Hoshina ◽  
Hiroaki Takeda ◽  
Takaaki Tsurumi

The relation between the dielectric tunability and the electro-optic (EO) effect of barium strontium titanate (Ba0.5Sr0.5TiO3) thin film was discussed. The tunability of dielectric permittivity calculated from the complex admittance with planer electrodes reached to 53.1%, and the tunability of birefringence by EO effect was 0.6%. The birefringence change from EO effect was much lower than the tunability of dielectric permittivity. The materials with high tunability do not always exhibit high EO effect. This is concluded to arise due to the ionic mass in the EO materials.


Sign in / Sign up

Export Citation Format

Share Document