scholarly journals Analysis of Platen Superheater Tube Degradation in Thermal Power Plants via Destructive/Non-Destructive Characteristic Evaluation

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 581
Author(s):  
Se-Beom Oh ◽  
Jongbeom Kim ◽  
Soon-Woo Han ◽  
Kyung-Mo Kim ◽  
Dong-Seok Yun ◽  
...  

Coal-fired power plants operating under Korea’s standard supercritical pressure operate in a high-temperature environment, with steam temperatures reaching 540 °C. A standard coal-fired power plant has a 30-year design life, and lifespan diagnosis is performed on facilities that have operated for more than 100,000 h or 20 years. Visual inspection, thickness measurements, and hardness measurements in the field are used to assess the degree of material degradation at the time of diagnosis. In this study, aging degradation was assessed using an electromagnetic acoustic transducer to measure the change in transverse ultrasonic propagation speed, and the results were compared to microstructural analysis and tensile test results. Based on the experimental results, it was found that the boiler tube exposed to a high-temperature environment during long-term boiler operation was degraded and damaged, the ultrasonic wave velocity was reduced, and the microstructural grains were coarsened. It was also confirmed through tensile testing that the tensile and yield strengths increased with degradation. Our findings prove that the degree of change in mechanical properties as a function of the material’s degradation state is proportional to the change in ultrasonic wave velocity.

2014 ◽  
Vol 627 ◽  
pp. 205-208
Author(s):  
Mattias Calmunger ◽  
Guo Cai Chai ◽  
Sten Johansson ◽  
Johan Moverare

Structural integrity is crucial for the safety of power plants with higher efficiency to meet the increasing global energy consumption. High-temperature environment will demand not only improved high-temperature corrosion resistance but also a maintained sufficient toughness. This study investigates how long term high-temperature environment influence the impact toughness of two austenitic stainless steels (AISI 304 and Sandvik SanicroTM 28) and one nickel-bas alloy (Alloy 617). Alloy 617 has shown increasing impact toughness with both increasing temperature and time, up to 700°C and 3 000 hours, while the two austenitic stainless steels have shown the opposite for the same conditions. At 10 000 hours the impact toughness of Alloy 617 has decreased but the alloy still possess great toughness. Both austenitic stainless steels show embrittlement due to brittle σ-phase and Alloy 617 seems to gain good impact toughness performance from small evenly distributed precipitates.


2009 ◽  
Vol 24 (12) ◽  
pp. 125008 ◽  
Author(s):  
Donagh O'Mahony ◽  
Walter Zimmerman ◽  
Sinje Steffen ◽  
Just Hilgarth ◽  
Pleun Maaskant ◽  
...  

2017 ◽  
Vol 25 (2) ◽  
pp. 353-364 ◽  
Author(s):  
Xiang Yang ◽  
Feng Cao ◽  
Wang Qing ◽  
Zhi-hang Peng ◽  
Yi Wang

Sign in / Sign up

Export Citation Format

Share Document