scholarly journals Influence of Carbon Sorbent Quantity on Breakthrough Time in Absorbent Filters for Antismog Half Mask Application

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 584
Author(s):  
Agnieszka Brochocka ◽  
Aleksandra Nowak ◽  
Paweł Kozikowski

In this article, we present polymer non-woven fabrics with the addition of carbon sorbents being tested to estimate the breakthrough time and efficient protection against vapors present in smog. For this purpose, three substances were selected, which constitute an inhalation hazard and are smog components: cyclohexane, toluene, and sulfur dioxide. It was demonstrated that an increased quantity of carbon sorbent in polymeric filters significantly prolongs the breakthrough time. However, high sorbent quantities may increase the filter surface mass and air flow resistance. To optimize the protective parameters with functionality, a compromise between the two has to be found. By comparing the breakthrough times for different carbon sorbent quantities, the optimal filter composition was elaborated. The analyzed non-woven fabrics were manufactured by the melt-blown process and filled with ball-milled carbon sorbents supplied directly into the fabric blowing nozzle. Both protective performance and textural properties were analyzed for two commercially available carbon sorbents. Furthermore, it was proven that high values of sorbent-specific surface area translates directly into greater filter performance.

2011 ◽  
Vol 14 (1) ◽  
pp. 41
Author(s):  
Z.A. Mansurov ◽  
A.R. Kerimkulova ◽  
S.A. Ibragimova ◽  
E.Y. Gukenheimer

The article presents the results of physico-chemical studies on the development of nanostructured carbon materials from domestic raw materials. Were obtained and tested micro-mesoporous carbon sorbents for molecular-sieve chromatography of markers and investigated the applicability of carbon sorbents for the separation of protein-lipid complex, and plant bio-stimulator. Carbon sorbents have well-developed porous structure but their disadvantage is the weak mechanical<br />strength. Recently it was shown that some carbon nanostructures have enormous strength. Thus arose the need to give the nano structured elements to carbon sorbent. Creating carbon sorbents containing nanocarbon structure was the aim of our study, as these by sorbents will be very useful for large-scale purification of biomolecules.


Author(s):  
V. V. Burlyaev ◽  
E. V. Burlyaeva ◽  
A. I. Nikolaev ◽  
B. V. Peshnev

The formalized model of carbon sorbent synthesis control based on the methodology for functional modeling is constructed. The correlations between the directions of use and the properties of carbon sorbents are revealed. The characteristics that are essential regardless of the direction of use of the sorbent, in particular, sorption properties and strength are identified. The technologies based on the gas-phase method of obtaining carbon material are considered, the analysis of individual stages of the process of obtaining carbon sorbents is carried out. The analysis of the influence of the technological parameters of the synthesis on the properties of sorbents is carried out. On the basis of the established relationships, a functional model has been built that provides a hierarchically ordered, structured, visual description of the management of carbon sorbent synthesis. The simulation is performed “from top to bottom” from the most general description to the detail. The resulting model is a set of interrelated graphical diagrams. At the initial stage, the synthesis of carbon sorbent is considered as a single process, the input parameters of which are hydrocarbon gas, the activating agent and the material form factor, the output - carbon sorbent, and the control parameters are the requirements for strength and sorption properties. Then the synthesis process is decomposed. The control processes (analysis of raw material properties and matrix selection), technological processes (raw material preparation) and mixed processes are distinguished as a result of decomposition. The model includes a consistent description of the technological parameters selection (temperature, gas flow and time) for both stages of the synthesis process. The model is the base for information support providing for the production of carbon sorbents with the required properties.


2019 ◽  
Vol 15 (1) ◽  
pp. 54-69
Author(s):  
V. T. Dolgikh ◽  
V. A. Likholobov ◽  
V. V. Moroz ◽  
L. G. P'yanova ◽  
T. I. Dolgikh ◽  
...  

The purpose is to study antibacterial and antimycotic properties of produced granular carbon sorbents. Material and methods. A VNIITU-1 carbon sorbent was used as a starting material, which was modified with polyvinylpyrrolidone and lactic and glycolic acids oligomers. Microbiological bench tests were carried out to determine the antibacterial and antimycotic activity of these granulated carbon hemosorbents. Antibacterial properties of sorbents were studied in relation to pathogenic and conditionally pathogenic microorganisms: Staphylococcus aureus, Pseudomonas aeroginosa, Klebsiella pneumonia, Escherichia coli, Streptococcus agalactiae as well as their mixtures: mixture No. 1 — S. aureus and E. coli; mixture No. 2 — S. aureus and P. aeruginosa. Results. Presented data demonstrate that the modified VNIITU-1 exhibits significant antibacterial and antimycotic activity against most of the studied microorganisms compared to original sorbent.  Conclusion. Modified sorbents as antimicrobial and detoxifying drugs may further be employed in treatment of obstetrical-gynecological and surgical diseases. The carbon sorbents are promising materials for medicine, as they expand the potential of sorption therapy in clinical practice.


Author(s):  
N. V. Irinchinova ◽  
V. I. Dudarev ◽  
E. G. Filatova ◽  
V. S. Aslamova

Abstract: The use of inexpensive materials such as sorbents increases the competitive advantages of removing heavy metal ions, including nickel (II) ions, from aqueous solutions and wastewater. Such materials include active carbons – carbon sorbents. The oxidized carbon sorbent AD-05-2 and its original analogue have been used as the object of this research. The oxidation of carbon sorbent AD-05-2 was conducted using a solution of nitric acid and urea following a conventional method. Oxidation resulted in improvement of the textural characteristics of the carbon sorbent. The total pore volume increased, including the volume of micropores, which had a positive effect on the sorption properties of the obtained sample. This article studies the adsorption of nickel (II) ions by the oxidized carbon sorbent AD-05-2 and its original analogue. For both models, the total time of establishing adsorptive equilibrium in the system adsorbate–adsorbent was 4 hours, pH = 9,6, and the range of temperatures – 298–338 K. The obtained experimental data on the nickel (II) ion adsorption are processed in the software package Statgraphics Plus. Adsorption isotherms are described using parabolic regression models, which cover 98.86–99.99% of the experimental data. The adsorption of nickel (II) ions increases with temperature, as indicated by a higher value of the first derivative dA/dCp, apparently, due to accelerated external diffusion. A significant steep rise of the isotherms corresponds to the temperature of 338 K, which indicates the diffusion effect on the adsorption process. The estimates of the accuracy of regression models are provided by the mean square σ and absolute Δ errors. Autocorrelation of experimental data is estimated using Durbin – Watson (DW) test. The obtained regression models can be applied for calculating the optimum parameters of nickel (II) ions’ adsorption from aqueous solutions and process stream using the oxidized carbonic sorbent AD-05-2 and its original analog.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Florin St. C. Mustata ◽  
Adriana Mustata

The electrical permittivity of the weaves obtained from natural cellulosic yarns or mixed with synthetic fibers was established with capacitor method. The highest value of relative electrical permittivity in case of the woven fabric from natural cellulosic fibers has been observed at the weave made of pure hemp (13.55) and the lowest at the weave obtained from the pure jute—weave packing (1.87). Electrical permittivity value of the pure jute weave packing is comparable to that of the permittivity for the glass thread, when the work conditions are as follows: temperature 25°C and air humidity 35%. The relative electrical permittivity of the weave is depending on the degree of crimping yarns especially in the weft direction, technological density in direction of the warp and weft, and surface mass of the weave.


1978 ◽  
Vol 28 (1) ◽  
pp. 47-52 ◽  
Author(s):  
Richard Dennis ◽  
Reed W. Cass ◽  
Robert R. Hall

2020 ◽  
Vol 65 (7-8) ◽  
pp. 3-7
Author(s):  
V. T. Dolgikh ◽  
L. G. Pyanova ◽  
E. V. Naumkina ◽  
A. V. Lavrenov ◽  
E. V. Matushchenko ◽  
...  

The aim of the work is to study the antibacterial and antimycotic properties of carbon sorbents modified with biologically active substances in relation to pathogens of purulent-inflammatory diseases. Material and methods. The activity of modifier solutions and modified samples of carbon sorbents was studied in relation to test strains of opportunistic microorganisms in comparison with the initial sample of carbon sorbent. A suspension with a known content of microbial cells was prepared from test strains of microorganisms; it was incubated in wells with test samples for 48 hours. The survival of microorganisms was determined by quantitative inoculation from each well of the sample and microorganism mixture at regular intervals of incubation on Petri dishes with simple agar nutrient, then the number of viable microbial cells in the test mixture was counted. Results. Studies have shown high antibacterial and antimycotic activity of modified carbon sorbents. The best result in comparison with the initial sample was demonstrated by a carbon sorbent modified with lactic acid oligomers and immobilized lysozyme. Studies have shown the promise of using modified carbon sorbent samples for the application therapy in bacterial infections.


1993 ◽  
Vol 36 (1) ◽  
pp. 26-36 ◽  
Author(s):  
Jae-Keun Lee ◽  
Benjamin Liu ◽  
Kenneth Rubow

An experimental study of particulate matter retention by microporous membranes during liquid filtration has been conducted using 0.1, 0.22, 0.45, and 0.65-μm-rated hydrophilic and hydrophobic membrane filters. Retention measurements have been made with polystyrene latex spheres using an automated filter test system and a laser particle counter to measure the upstream and downstream particle concentration. Particle filtration during loading tests was found to begin with a sieving dominant regime followed by a transition regime and a cake filtration regime as particles accumulate inside the filter pores and on the filter surface. For latex sphere sizes equal to the nominal pore size of the filter, the initial filter efficiencies ranged from 97 to 99.9 percent. Complete retention (&gt;99.9999999 percent) was achieved for a range of particle sizes two to three times the rated pore sizes of the filter. With the addition of a surfactant to the liquid, the retention was found to be lowered as a result of enhanced particle passage through the filter due to modified surface adsorption and steric stabilization. It was found that particle retention by sieving with the addition of surfactant provided the "worst-case" test for filter performance.


Sign in / Sign up

Export Citation Format

Share Document