scholarly journals Hot Deformation Behavior of Non-Alloyed Carbon Steels

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 595
Author(s):  
Petr Kawulok ◽  
Petr Opěla ◽  
Ivo Schindler ◽  
Rostislav Kawulok ◽  
Stanislav Rusz ◽  
...  

The hot deformation behavior of selected non-alloyed carbon steels was investigated by isothermal continuous uniaxial compression tests. Based on the analysis of experimentally determined flow stress curves, material constants suitable for predicting peak flow stress σp, peak strain εp and critical strain εcrDRX necessary to induce dynamic recrystallization and the corresponding critical flow stresses σcrDRX were determined. The validity of the predicted critical strains εcrDRX was then experimentally verified. Fine dynamically recrystallized grains, which formed at the boundaries of the original austenitic grains, were detected in the microstructure of additionally deformed specimens from low-carbon investigated steels. Furthermore, equations describing with perfect accuracy a simple linear dependence of the critical strain εcrDRX on peak strain εp were derived for all investigated steels. The determined hot deformation activation energy Q decreased with increasing carbon content (also with increasing carbon equivalent value) in all investigated steels. A logarithmic equation described this dependency with reasonable accuracy. Individual flow stress curves of the investigated steels were mathematically described using the Cingara and McQueen model, while the predicted flow stresses showed excellent accuracy, especially in the strains ranging from 0 to εp.

2016 ◽  
Vol 35 (3) ◽  
pp. 327-336 ◽  
Author(s):  
Sendong Gu ◽  
Liwen Zhang ◽  
Chi Zhang ◽  
Wenfei Shen

AbstractThe hot deformation characteristics of nickel-based alloy Nimonic 80A were investigated by isothermal compression tests conducted in the temperature range of 1,000–1,200°C and the strain rate range of 0.01—5 s–1on a Gleeble-1500 thermomechanical simulator. In order to establish the constitutive models for dynamic recrystallization (DRX) behavior and flow stress of Nimonic 80A, the material constantsα,nand DRX activation energyQin the constitutive models were calculated by the regression analysis of the experimental data. The dependences of initial stress, saturation stress, steady-state stress, dynamic recovery (DRV) parameter, peak strain, critical strain and DRX grain size on deformation parameters were obtained. Then, the Avrami equation including the critical strain for DRX and the peak strain as a function of strain was established to describe the DRX volume fraction. Finally, the constitutive model for flow stress of Nimonic 80A was developed in DRV region and DRX region, respectively. The flow stress values predicted by the constitutive model are in good agreement with the experimental ones, which indicates that the constitutive model can give an accurate estimate for the flow stress of Nimonic 80A under the deformation conditions.


2013 ◽  
Vol 709 ◽  
pp. 143-147 ◽  
Author(s):  
Tao Wang ◽  
Zhao Li ◽  
Shu Hong Fu ◽  
Yong Zhang ◽  
Yu Xin Zhao ◽  
...  

The hot deformation behavior of U720Li was investigated by isothermal compression tests at temperature ranging from 1060-1180°C and strain rate from 0.001s-1 to 20s-1. The flow stress-strain curves and microstructures were investigated and a constitutive equation was established. It is found that flow stress is sensitive to stain rate and deformation temperature greatly. The higher stain rate resultes in a larger fluctuation in flow stress. The hot deformation activation energy is determined to be 552.8kJ/mol. Grain size increases with increasing temperature and decreases firstly and then increases with increasing strain rate. U720Li alloy should be deformed below the solve temperature of γ primary phase with lower strain rate in order to obtain the even and fine grain size.


2013 ◽  
Vol 17 (5) ◽  
pp. 1523-1528
Author(s):  
Bao-Hua Jia ◽  
Wei-Dong Song ◽  
Hui-Ping Tang ◽  
Jian-Guo Ning

Isothermal compression tests of TC18 titanium alloy at the deformation temperatures ranging from 25?C to 800?C and strain rate ranging from 10-4 to 10-2 s-1 were conducted by using a WDW-300 electronic universal testing machine. The hot deformation behavior of TC18 was characterized based on an analysis of the true stress-true strain curves of TC18 titanium alloy. The curves show that the flow stress increases with increasing the strain rate and decreases with increasing the temperature, and the strain rate play an important role in the flow stress when increasing the temperatures. By taking the effect of strain into account, an improved constitutive relationship was proposed based on the Arrhenius equation. By comparison with the experimental results, the model prediction agreed well with the experimental data, which demonstrated the established constitutive relationship was reliable and can be used to predict the hot deformation behavior of TC18 titanium alloy.


2011 ◽  
Vol 314-316 ◽  
pp. 1159-1162
Author(s):  
Hai Yan Zhang ◽  
Shi Hong Zhang ◽  
Ming Cheng

The effect of δ phase content on the hot deformation behavior of alloy IN718 has been investigated using isothermal compression tests. The results indicated that the δ phase has a significant effect on the deformation behavior of alloy IN718 during hot working. After the peak stress, the decreasing speed of the stress raises as the increase in the δ phase content. The deformation activation energy for alloy IN718 increases with the raise of the δ phase content. And the peak strain for the alloy decreases with the increase of the δ phase content, which indicates that the δ phase can stimulate the occurrence of dynamic recrystallization during hot working.


2013 ◽  
Vol 721 ◽  
pp. 270-273
Author(s):  
Xue Rui Yang ◽  
Bao Hong Tian ◽  
Yi Zhang ◽  
Yong Liu

The multi-size Al2O3 particles dispersion strengthened copper base composite (i.e. Al2O3/Cu-0.6%Al2O3 composite) was prepared by the vacuum hot-press sintering-internal oxidizing method. The hot deformation behavior of Al2O3/Cu-0.6%Al2O3 composite was investigated by the isothermal compression tests at the temperature range from 600°C to 950°C and strain rates of 0.001 s-1 and 1s-1 respectively with a Gleeble-1500D thermal simulator system. The results show that the flow stress-strain curves of Al2O3/Cu-0.6%Al2O3 composites indicate the softening mechanism of recrystallization. The flow stress increases with the deformation strain increasing, then decreases and tends to be steady. The hot deformation activation energy is calculated as 116.46 kJ/mol for the Al2O3/Cu-0.6%Al2O3 composite. The strain-stress constitutive equation is established on the basis of above results.


Metals ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 481 ◽  
Author(s):  
Zhang ◽  
Lian ◽  
Chen ◽  
Sun ◽  
Zhang ◽  
...  

The hot deformation behavior and microstructure evolution of a 7.5 vol% TiBw/near α-Ti composite with fine matrix microstructure were investigated under the deformation conditions in a temperature range of 800–950 °C and strain rate range of 0.001–1 s−1 using plane strain compression tests. The flow stress curves show different characteristics according to the various deformation conditions. At a higher strain rate (1 s−1), the flow stress of the composite continuously increases until a peak value is reached. The activation energy is 410.40 kJ/mol, much lower than the activation energy of as-sintered or as-forged composites. The decreased activation energy is ascribed to the breaking of the TiBw reinforcement during the multi-directional forging and the resultant fine matrix microstructure. Refined reinforcement and refined matrix microstructure significantly improve the hot deformation ability of the composite. The deformation conditions determine the morphology and fraction of α and β phases. At 800–900 °C and 0.01 s−1 the matrix α grains are much refined due to the continuous dynamic recrystallization (CDRX). The processing map is constructed based on the hot deformation behavior and microstructure evolution. The optimal hot processing window is determined to be 800–950 °C/0.001–0.01 s−1, which lead to CDRX of primary α grains or dynamic recovery (DRV) and dynamic recrystallization (DRX) of β phase.


2014 ◽  
Vol 900 ◽  
pp. 588-591
Author(s):  
Gang Chen ◽  
Wei Chen ◽  
Guo Wei Zhang ◽  
Jing Zhai ◽  
Li Ma ◽  
...  

The deformation behavior and constitutive equation of Mg-4Al-3Ca-1.5Zn-1Nd-0.2Mn alloy were investigated using hot compression tests at the temperatures range of 200, 250, 300, and 350°C with the constant strain rates of 0.001, 0.01, 0.1 And1 s-1. The influence of strain was also incorporated in the constitutive equation by considering the effects of strain on material constants which are consist of A, α, β, n and activation energy Q. The predicted flow stress curves using the proposed constitutive equations well agree with the experimental results of the flow stress for experimental Alloy.


Author(s):  
H. R. Rezaei Ashtiani ◽  
H. Bisadi ◽  
M. H. Parsa

The experimental stress–strain data from isothermal hot compression tests, in a wide range of temperatures (350–500 °C) and strain rates (0.005–0.5 s−1), were employed to develop constitutive equations in a commercially pure aluminum (AA1070). The effects of temperature and strain rate on the hot deformation behavior were represented by Zener–Hollomon parameter including Arrhenius term. The results show that the hardening rate and flow stress are evidently affected by both deformation temperature and strain rate. The power law, exponential, and hyperbolic sinusoidal types of Zener–Hollomon equations were used to determine the hot deformation behavior of AA1070. The results suggested that the highest correlation coefficient was achieved for the hyperbolic sine law for the studied material. So the proposed deformation constitutive equations can give an accurate and precise estimate of the flow stress for AA1070, which means it can be used for numerical simulation of hot forming processes and for choosing proper forming parameters in engineering practice accurately.


2012 ◽  
Vol 602-604 ◽  
pp. 2006-2010
Author(s):  
Fei Zhao ◽  
Yan Yan ◽  
Yong Hai Ren

The hot deformation behavior of CL60 rail wheel steel has been studied by employing both processing maps and microstructural observations. Tests are performed at temperatures of 800—1100°C and strain rates of 0.1s-1—5s-1 and the flow stress data obtained from the tests are used to develop processing maps. The microstructural evolution of deformed samples is also examined on the basis of optical microscopic observations. The result indicates that under experimental conditions this alloy shows dynamic recrystallization(RDX) characteristics during hot compression deformation. Both deformation temperatures and strain rates have obvious influence on flow stress and its corresponding peak strain, which increase gradually with decreasing temperature and increasing strain rate. RDX occurred at higher temperature and lower strain rate.


2019 ◽  
Vol 960 ◽  
pp. 78-84 ◽  
Author(s):  
Chao Yuan Wang ◽  
Xiao Jun Song ◽  
Jin Wen Zou

The hot deformation behavior and microstructure of a powder metallurgy (P/M) Ni-base superalloy with different original microstructure were studied by isothermal compression tests. The isothermal compression tests were conducted on Gleeble-3500D simulator with the temperature range of 1000°C~1100°C and the strain rate of 0.001s-1~0.1s-1. The results showed that the flow stress of the specimens with fine grains (10μm) and ultrafine grains (3μm) gained by hot extruding (HEX) were much less than the that with the average grain diameter of 30μm by hot isostatic pressing (HIP). At the strain rate of 0.001s-1,the as-HIPed specimens with the average grain diameter of 30μm showed steady-state deformation at 1100°C only, whereas the as-HEXed specimens with the average grain diameter of 10μm and 3μm showed steady-state deformation both at 1050°C and 1100°C. The flow stress showed decreasing trend as the average grain diameter decreasing. The activation energy of hot deformation decreased form 622.79 kJ·mol-1 to 302.36 kJ·mol-1 as the average grain diameter decreased from 30μm to 3μm. When the as-HEXed specimen with the average grain diameter of 3μm was deformed at the condition of (1050°C, 0.001s-1), the flow stress was lower than that at the condition of (1100°C,0.001s-1), and the former also gained much finer and uniform grain, the later gained mixed grains.


Sign in / Sign up

Export Citation Format

Share Document