scholarly journals Applied Mechatronics: On Mitigating Disturbance Effects in MEMS Resonators Using Robust Nonsingular Terminal Sliding Mode Controllers

Machines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 34
Author(s):  
Aydin Azizi ◽  
Hamed Mobki ◽  
Hassen M. Ouakad ◽  
Omid Reza B. Speily

This investigation attempts to study a possible controller in improving the dynamic stability of capacitive microstructures through mitigating the effects of disturbances and uncertainties in their resultant dynamic behavior. Consequently, a nonsingular terminal sliding mode control strategy is suggested in this regard. The main features of this particular control strategy are its high response speed and its non-reliance on powerful controller forces. The stability of the controller was investigated using Lyapunov theory. For this purpose, a suitable Lyapunov function was introduced to prove the stability of a controller, and the singularity conditions and methods to overcome these conditions are presented. The achieved results proved the high capability of the applied technique in stabilizing of the microstructure as well as mitigating the effects of disturbances and uncertainties.

2013 ◽  
Vol 273 ◽  
pp. 280-285 ◽  
Author(s):  
Hong Pei Han ◽  
Wu Wang ◽  
Zheng Min Bai

Permanent Magnet Linear Synchronous Motor (P MLSM was hard to control with traditional control strategy for parameters variation and external load disturbance, a global robust terminal sliding mode control (GRTSMC) was designed for PMLSM servo system, the sliding mode surface function was designed, the robust sliding mode control law was deduced and the stability was proved by Lyapunov theory. With the mathematical models of PMLSM, the simulation was taken with traditional PID control, SMC control and GRTSMC control proposed in this paper, the robust performance be found with GRTSMC control when motor parameters and external load changed, the efficiency and advantages of this robust control strategy was successfully demonstrated.


2021 ◽  
Author(s):  
Normaisharah Mamat ◽  
Mohd Fauzi Othman ◽  
Mohd Fitri Mohd Yakub

Abstract Building structures are prone to damage due to natural disasters, and this challenges structural engineers to design safer and more robust building structures. This study is conducted to prevent these consequences by implementing a control strategy that can enhance a building's stability and reduce the risk of damage. Therefore, to realize the structural integrity of a building, a hybrid control device is equipped with control strategies to enhance robustness. The control strategy proposed in this study is adaptive nonsingular terminal sliding mode control (ANTSMC). ANTSMC is an integrated controller of radial basis function neural network (RBFNN) and nonsingular terminal sliding mode control (NTSMC), which has a fast dynamic response, finite-time convergence, and the ability to enhance the control performance against a considerable uncertainty. The proposed controller is designed based on the sliding surface and the control law. The building with a two-degree-of-freedom (DOF) system is designed in Matlab/Simulink and validated with the experimental work connected to the LMSTest.Lab software. The performance of this controller is compared with those of the terminal sliding mode control (TSMC) and NTSMC in terms of the displacement response, sliding surface, and the probability of damage. The result showed that the proposed controller, ANTSMC can suppress vibrations up to 46%, and its percentage probability of complete damage is 15% from the uncontrolled structure. Thus, these findings are imperative towards increasing the safety level in building structures and occupants, and reducing damage costs in the event of a disaster.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Nannan Shi ◽  
Fanghui Luo ◽  
Zhikuan Kang ◽  
Lihui Wang ◽  
Zhuo Zhao ◽  
...  

An adaptive nonsingular terminal sliding mode control (ANTSMC) scheme for the n-link robot manipulator is presented in this study, which can achieve faster convergence and higher precision tracking compared with the linear hyperplane-based sliding mode control. Novel adaptive updating laws based on the actual tracking error are employed to online adjust the upper bound of uncertainty, which comprehensively consider both the tracking performance and chattering eliminating problem. The stability analysis of the proposed ANTSMC is verified using the Lyapunov method with the existence of the parameter uncertainty and the actuator faults. Numerical simulation studies the comparison of performance between ANTSMC and the conventional nonsingular terminal sliding mode control (NTSMC) scheme to validate the advantages of the proposed control algorithm.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Moussa Labbadi ◽  
Mohamed Cherkaoui

The purpose of this paper is to solve the problem of controlling of the quadrotor exposed to external constant disturbances. The quadrotor system is partitioned into two parts: the attitude subsystem and the position subsystem. A new robust integral terminal sliding mode control law (RITSMC) is designed for stabilizing the inner loop and the quick tracking of the right desired values of the Euler angles. To estimate the disturbance displayed on the z-axis and to control the altitude position subsystem, an adaptive backstepping technique is proposed, while the horizontal position subsystem is controlled using the backstepping approach. The stability of the quadrotor subsystems is guaranteed by the Lyapunov theory. The effectiveness of the proposed methods is clearly comprehended through the obtained results of the various simulations effectuated on MATLAB/Simulink, and a comparison with another technique is presented.


2020 ◽  
Vol 5 (8) ◽  
pp. 922-929
Author(s):  
Aime Herve Samba ◽  
Aurelien Yeremou Tamtsia ◽  
Leandre Nneme Nneme ◽  
Korassaï Korassaï

In this paper a fast terminal sliding mode control (FTSMC) is used for speed control of Kaplan hydroturbine governing system in the presence of load torque disturbance. The stability of the proposed controller is proved with the lyapunov function method.The results indicate that the proposed terminal sliding mode controllers not only have a faster response and allows to carry out high performances as well in precision   as in finite time of convergence. Moreover, the comparisons of the dynamic performances between the proposed fast terminal sliding mode controllers (FTSMC) and non-singular fast terminal sliding mode controllers (NSTSMC) , are discussed at the end of this paper, where the effectiveness and robustness superiority of the fast terminal sliding mode controller proposed also is been verified.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Minh-Duc Tran ◽  
Hee-Jun Kang

This paper presents a high-performance nonsingular terminal sliding mode control method for uncertain second-order nonlinear systems. First, a nonsingular terminal sliding mode surface is introduced to eliminate the singularity problem that exists in conventional terminal sliding mode control. By using this method, the system not only can guarantee that the tracking errors reach the reference value in a finite time with high-precision tracking performance but also can overcome the complex-value and the restrictions of the exponent (the exponent should be fractional number with an odd numerator and an odd denominator) in traditional terminal sliding mode. Then, in order to eliminate the chattering phenomenon, a super-twisting higher-order nonsingular terminal sliding mode control method is proposed. The stability of the closed-loop system is established using the Lyapunov theory. Finally, simulation results are presented to illustrate the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document