scholarly journals Reconfigurable Machine Tool Design for Box-Type Part Families

Machines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 148
Author(s):  
Yongquan Wang ◽  
Guangpeng Zhang ◽  
Jiali Wang ◽  
Pan Liu ◽  
Nina Wang

The reconfigurable manufacturing system (RMS) is a new manufacturing technology and paradigm that resolves the contradictions regarding high efficiency, low cost and flexible production in the mass production of part families. Reconfigurable machine tools (RMTs) are the core components of RMSs. A new approach is proposed for the design of RMTs, which is closely related to the process planning of a given box-type part family. The concepts of the processing unit and the processing segment are presented; they are not only the basic elements of the processing plans of machined parts, but also closely related to the structural design of RMTs. Processing units created by processing features can be combined into various processing segments. All the processing units of one processing segment correspond to the machining operations performed by one RMT. By arranging the processing segments according to the processing sequence, a variety of feasible processing plans for a part can be obtained. Through analysis of the established similarity calculation model for processing plans, the most similar processing plans for the parts in a given part family can be determined and used for the structural design of RMTs. Therefore, the designed RMTs can achieve rapid conversion of processing functions with the least module replacement or adjustment to realize the production of the parts in the part family. Taking the production of a gearbox part family as an example, the validity of the presented method is verified.

2019 ◽  
Vol 18 (5) ◽  
pp. 991-1014
Author(s):  
Vennan Sibanda ◽  
Khumbulani Mpofu ◽  
John Trimble ◽  
Mufaro Kanganga

Purpose Reconfigurable machines tools (RMTs) are gaining momentum as the new solutions to customised products in the manufacturing world. The driving force, among others, behind these machines is the part envelope and the part family of products that they can produce. The purpose of this paper is to propose a new class of RMT known as a reconfigurable guillotine shear and bending press machine (RGS&BPM). A part family of products that this machine can produce is developed using hierarchical clustering methodologies. The development of these part families is guided by the relationship of the parts in the family in terms of complexity and geometry. Design/methodology/approach Part families cannot be developed in isolation, but that process has to incorporate the machine modules used in the reconfiguration process for producing the parts. Literature was reviewed, and group technology principles explored, to develop a concept that can be used to develop the part families. Matrices were manipulated to generate part families, and this resulted in the development of a dendrogram of six possible part families. A software with a graphic user interface for manipulation was also developed to help generate part families and machine modules. The developed concept will assist in the development of a machine by first developing the part family of products and machine modules required in the variable production process. Findings The developed concepts assist in the development of a machine by first developing the part family of products and machine modules required in the variable production process. The development of part families for the RGS&BPM is key to developing the machine work envelope and modules to carry out the work. This work has been presented to demonstrate the importance of machine development in conjunction with a part family of products that the machine will produce. The paper develops an approach to manufacturing where part families of products are developed prior to developing the machine. The families of products are then used to develop modules that enable the manufacture of the parts and subsequently the size of the machine. Research limitations/implications The research was limited to the development of part families for a new RGS&BPM, which is still under development. Practical implications The study reflects the development of reconfigurable machines as a solution to manufacturing challenges in terms of group technology approaches adopted in the design phase. It also highlights the significance of the concepts in the reconfigurable machine tool design. The part families define the machine work envelop and its reconfiguration capability. Social implications The success of the research will usher an alternative to smaller players in sheet metal work. It will contribute to the easy development of the machine that will bridge the high cost of machine tools. Originality/value The study contributes to the new approach in sheet metal manufacturing where dedicated machines may be substituted by a highly flexible reconfigurable machine that has a dual operation, making the investment for small to medium enterprises affordable. It also contributes to the body of knowledge in reconfigurable machine development and the framework for such activities, especially in developing countries.


Author(s):  
Fan Wang ◽  
Xingzhong Guo ◽  
Fan He ◽  
Yang Hou ◽  
Fu Liu ◽  
...  

Constructing bifunctional electrocatalysts with high-efficiency, low-cost and excellent durability is of great significance for overall water splitting. Structural design of non-noble metal electrocatalysts is essential for tuning their electrocatalytic properties....


Author(s):  
Fatma Ezzahra Sayadi ◽  
Marwa Chouchene ◽  
Haithem Bahri ◽  
Randa Khemiri ◽  
Mohamed Atri

Background: Advances in video compression technology have been driven by everincreasing processing power available in software and hardware. Methods: The emerging High-Efficiency Video Coding (HEVC) standard aims to provide a doubling in coding efficiency with respect to the H.264/AVC high profile, delivering the same video quality at half the bit rate. Results: Thus, the results show high computational complexity. In both standards, the motion estimation block presents a significant challenge in clock latency since it consumes more than 40% of the total encoding time. For these reasons, we proposed an optimized implementation of this algorithm on a low-cost NVIDIA GPU developed with CUDA language. Conclusion: This optimized implementation can provide high-performance video encoder where the speed reaches about 85.


Author(s):  
K.M. Hones ◽  
P. Sheldon ◽  
B.G. Yacobi ◽  
A. Mason

There is increasing interest in growing epitaxial GaAs on Si substrates. Such a device structure would allow low-cost substrates to be used for high-efficiency cascade- junction solar cells. However, high-defect densities may result from the large lattice mismatch (∼4%) between the GaAs epilayer and the silicon substrate. These defects can act as nonradiative recombination centers that can degrade the optical and electrical properties of the epitaxially grown GaAs. For this reason, it is important to optimize epilayer growth conditions in order to minimize resulting dislocation densities. The purpose of this paper is to provide an indication of the quality of the epitaxially grown GaAs layers by using transmission electron microscopy (TEM) to examine dislocation type and density as a function of various growth conditions. In this study an intermediate Ge layer was used to avoid nucleation difficulties observed for GaAs growth directly on Si substrates. GaAs/Ge epilayers were grown by molecular beam epitaxy (MBE) on Si substrates in a manner similar to that described previously.


2019 ◽  
Author(s):  
Charlys Bezerra ◽  
Géssica Santos ◽  
Marilia Pupo ◽  
Maria Gomes ◽  
Ronaldo Silva ◽  
...  

<p>Electrochemical oxidation processes are promising solutions for wastewater treatment due to their high efficiency, easy control and versatility. Mixed metal oxides (MMO) anodes are particularly attractive due to their low cost and specific catalytic properties. Here, we propose an innovative thermal decomposition methodology using <a>polyvinyl alcohol (PVA)</a> as a solvent to prepare Ti/RuO<sub>2</sub>–IrO<sub>2</sub> anodes. Comparative anodes were prepared by conventional method employing a polymeric precursor solvent (Pechini method). The calcination temperatures studied were 300, 400 and 500 °C. The physical characterisation of all materials was performed by X-ray diffraction and scanning electron microscopy coupled with energy dispersive spectroscopy, while electrochemical characterisation was done by cyclic voltammetry, accelerated service lifetime and electrochemical impedance spectroscopy. Both RuO<sub>2</sub> and IrO<sub>2</sub> have rutile-type structures for all anodes. Rougher and more compact surfaces are formed for the anodes prepared using PVA. Amongst temperatures studied, 300 °C using PVA as solvent is the most suitable one to produce anodes with expressive increase in voltammetric charge (250%) and accelerated service lifetime (4.3 times longer) besides reducing charge-transfer resistance (8 times lower). Moreover, the electrocatalytic activity of the anodes synthesised with PVA toward the Reactive Blue 21 dye removal in chloride medium (100 % in 30 min) is higher than that prepared by Pechini method (60 min). Additionally, the removal total organic carbon point out improved mineralisation potential of PVA anodes. Finally, this study reports a novel methodology using PVA as solvent to synthesise Ti/RuO<sub>2</sub>–IrO<sub>2</sub> anodes with improved properties that can be further extended to synthesise other MMO compositions.</p>


Author(s):  
Zhengwang Xu ◽  
Wei Mei ◽  
Jiaqi Yu ◽  
Jiarui Zhang ◽  
Yuchun Yi ◽  
...  

As being restricted by factors such as cost, efficiency and size, the development of high-power solar LED street light controller is faced with plenty of difficulties. In case that a structure of two independent DC/DC is applied as the main circuit, it has to face problems such as large size and high cost; in case of applying the bidirectional BUCK/BOOST circuit, it requires change-over switches to control the solar panel and LED light. As being restricted by withstanding voltage, on-resistance and cost, a PMOS device cannot be used as the change-over switch of solar panel and LED light. However, when being used as a change-over switch, an NMOS device must apply the low-side mode under which the negative ends of the mentioned three parts are cut off. In the condition of applying the low-side mode, a differential circuit must be used to detect the voltage of the solar panel. Furthermore, in order to make sure batteries can still be regularly charged after wearing out in daylight, the controller must be supplied with power through a dual power supply circuit that can obtain power from both the solar panel and the battery. The demander has a requirement on extremely low standby power consumption of the product, and thus it is necessary to minimize the circuit that is live while working in standby mode. Methods: The bidirectional BUCK/BOOST circuit structure is applied to the main circuit to realize a higher change-over efficiency while giving considerations to both cost and size. The NMOS device, model IRFB4410ZPBF, with a price of about three yuan, is used as the switching device, and the low-side mode is applied, that is the switches inserted in between negative end of the solar panel or LED light and that of the DC/DC circuit. The low-cost rail-to-rail operational amplifier LM358 is used to form a differential amplification circuit for detecting the voltage of the solar panel. A XL1509-12E1 chip that only costs 0.88 yuan/pc is selected as the main change-over chip for the power supply, which has realized the highly-efficient and low-cost change-over of the power supply. A dual power supply circuit and a step-down protective circuit are designed for the XL1509-12E1 change-over chip. By comparing solar panel voltage with battery voltage, the solar panel booting circuit is realized. Only when solar panel voltage is higher than battery voltage, does the system program start to power it up for running, so that the outage of most of the circuits of the system under standby mode does not consume energy. Furthermore, the solar panel voltage detecting circuit, the solar panel booting circuit and several return difference functions are corrected during system debugging. Results: The circuit board of the entire controller features small size, low cost and high efficiency. It measures about 100*62*18mm in size, costs about 60 yuan, and the charge/discharge change-over efficiency reaches up to over 95%. The controller has many functions: it is capable of operating within a large scope, in which, solar panel voltage is subject to 15~50V, LED light voltage is subject to 15~60V, battery voltage is subject to 10~35V and battery-end charge/discharge current is 10A; it is capable of adapting to monocrystalline silicon/multicrystalline silicon/thin-film and many other kinds of solar panels, as well as lithium/lead-acid and many other kinds of batteries; it is capable of detecting the conversion of day and night, automatically controlling charging and discharging and automatically making adaptive adjustment according to seasonal variations; the current to be consumed during standby will be maintained below 3mA, and thus the power consumption is extremely low. Conclusion: By selecting the bidirectional BUCK/BOOST circuit structure, applying low-side mode for switching of solar panel and LED light, using a differential circuit to detect solar panel voltage, using a low-cost DC/DC chip to realize power supply change-over, designing a dual power supply circuit, introducing solar panel booting circuit and other hardware design, as well as MPPT algorithm, state recognition and control, return difference control and other software design, a solar LED street light control product featuring small size, low cost, high efficiency and multiple functions is successfully developed.


2021 ◽  
Vol 13 (15) ◽  
pp. 8421
Author(s):  
Yuan Gao ◽  
Jiandong Huang ◽  
Meng Li ◽  
Zhongran Dai ◽  
Rongli Jiang ◽  
...  

Uranium mining waste causes serious radiation-related health and environmental problems. This has encouraged efforts toward U(VI) removal with low cost and high efficiency. Typical uranium adsorbents, such as polymers, geopolymers, zeolites, and MOFs, and their associated high costs limit their practical applications. In this regard, this work found that the natural combusted coal gangue (CCG) could be a potential precursor of cheap sorbents to eliminate U(VI). The removal efficiency was modulated by chemical activation under acid and alkaline conditions, obtaining HCG (CCG activated with HCl) and KCG (CCG activated with KOH), respectively. The detailed structural analysis uncovered that those natural mineral substances, including quartz and kaolinite, were the main components in CCG and HCG. One of the key findings was that kalsilite formed in KCG under a mild synthetic condition can conspicuous enhance the affinity towards U(VI). The best equilibrium adsorption capacity with KCG was observed to be 140 mg/g under pH 6 within 120 min, following a pseudo-second-order kinetic model. To understand the improved adsorption performance, an adsorption mechanism was proposed by evaluating the pH of uranyl solutions, adsorbent dosage, as well as contact time. Combining with the structural analysis, this revealed that the uranyl adsorption process was mainly governed by chemisorption. This study gave rise to a utilization approach for CCG to obtain cost-effective adsorbents and paved a novel way towards eliminating uranium by a waste control by waste strategy.


2021 ◽  
Vol 11 (15) ◽  
pp. 6831
Author(s):  
Yue Chen ◽  
Jian Lu

With the rapid development of road traffic, real-time vehicle counting is very important in the construction of intelligent transportation systems (ITSs). Compared with traditional technologies, the video-based method for vehicle counting shows great importance and huge advantages in its low cost, high efficiency, and flexibility. However, many methods find difficulty in balancing the accuracy and complexity of the algorithm. For example, compared with traditional and simple methods, deep learning methods may achieve higher precision, but they also greatly increase the complexity of the algorithm. In addition to that, most of the methods only work under one mode of color, which is a waste of available information. Considering the above, a multi-loop vehicle-counting method under gray mode and RGB mode was proposed in this paper. Under gray and RGB modes, the moving vehicle can be detected more completely; with the help of multiple loops, vehicle counting could better deal with different influencing factors, such as driving behavior, traffic environment, shooting angle, etc. The experimental results show that the proposed method is able to count vehicles with more than 98.5% accuracy while dealing with different road scenes.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1579
Author(s):  
Heng Zhang ◽  
Na Wang ◽  
Kai Liang ◽  
Yang Liu ◽  
Haiping Chen

A solar-aided power generation (SAPG) system effectively promotes the high efficiency and low cost utilization of solar energy. In this paper, the SAPG system is represented by conventional coal-fired units and an annular Fresnel solar concentrator (AFSC) system. The annular Fresnel solar concentrator system is adopted to generate solar steam to replace the extraction steam of the turbine. According to the steam–water matrix equation and improved Flugel formula, the variable conditions simulation and analysis of the thermo-economic index were proposed by Matlab. Furthermore, in order to obtain the range of small disturbance, the method of partial replacement is used, that is, the extraction steam of the turbine is replaced from 0 to 100% with a step size of 20%. In this work, a SAPG system is proposed and its thermo-economic index and small disturbance scope are analyzed. The results show that the SAPG system is energy-saving, and the application scope of small disturbance is related to the quantity of the extraction steam and evaluation index.


Sign in / Sign up

Export Citation Format

Share Document