scholarly journals On the Growth of Some Functions Related to z(n)

Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 876 ◽  
Author(s):  
Pavel Trojovský

The order of appearance z : Z > 0 → Z > 0 is an arithmetic function related to the Fibonacci sequence ( F n ) n . This function is defined as the smallest positive integer solution of the congruence F k ≡ 0 ( mod n ) . In this paper, we shall provide lower and upper bounds for the functions ∑ n ≤ x z ( n ) / n , ∑ p ≤ x z ( p ) and ∑ p r ≤ x z ( p r ) .

Author(s):  
Sukrawan Mavecha

AbstractWe consider the Diophantine equation x2-kxy+ky2+ ly = 0 for l = 2nand determine for which values of the odd integer k, it has a positive integer solution x and y.


2021 ◽  
Vol 6 (10) ◽  
pp. 10596-10601
Author(s):  
Yahui Yu ◽  
◽  
Jiayuan Hu ◽  

<abstract><p>Let $ k $ be a fixed positive integer with $ k &gt; 1 $. In 2014, N. Terai <sup>[<xref ref-type="bibr" rid="b6">6</xref>]</sup> conjectured that the equation $ x^2+(2k-1)^y = k^z $ has only the positive integer solution $ (x, y, z) = (k-1, 1, 2) $. This is still an unsolved problem as yet. For any positive integer $ n $, let $ Q(n) $ denote the squarefree part of $ n $. In this paper, using some elementary methods, we prove that if $ k\equiv 3 $ (mod 4) and $ Q(k-1)\ge 2.11 $ log $ k $, then the equation has only the positive integer solution $ (x, y, z) = (k-1, 1, 2) $. It can thus be seen that Terai's conjecture is true for almost all positive integers $ k $ with $ k\equiv 3 $(mod 4).</p></abstract>


10.37236/1794 ◽  
2004 ◽  
Vol 11 (1) ◽  
Author(s):  
Michael R. Dransfield ◽  
Lengning Liu ◽  
Victor W. Marek ◽  
Mirosław Truszczyński

In this paper we bring together the areas of combinatorics and propositional satisfiability. Many combinatorial theorems establish, often constructively, the existence of positive integer functions, without actually providing their closed algebraic form or tight lower and upper bounds. The area of Ramsey theory is especially rich in such results. Using the problem of computing van der Waerden numbers as an example, we show that these problems can be represented by parameterized propositional theories in such a way that decisions concerning their satisfiability determine the numbers (function) in question. We show that by using general-purpose complete and local-search techniques for testing propositional satisfiability, this approach becomes effective — competitive with specialized approaches. By following it, we were able to obtain several new results pertaining to the problem of computing van der Waerden numbers. We also note that due to their properties, especially their structural simplicity and computational hardness, propositional theories that arise in this research can be of use in development, testing and benchmarking of SAT solvers.


2021 ◽  
Vol 5 (1) ◽  
pp. 115-127
Author(s):  
Van Thien Nguyen ◽  
◽  
Viet Kh. Nguyen ◽  
Pham Hung Quy ◽  
◽  
...  

Let \((a, b, c)\) be a primitive Pythagorean triple parameterized as \(a=u^2-v^2, b=2uv, c=u^2+v^2\), where \(u>v>0\) are co-prime and not of the same parity. In 1956, L. Jesmanowicz conjectured that for any positive integer \(n\), the Diophantine equation \((an)^x+(bn)^y=(cn)^z\) has only the positive integer solution \((x,y,z)=(2,2,2)\). In this connection we call a positive integer solution \((x,y,z)\ne (2,2,2)\) with \(n>1\) exceptional. In 1999 M.-H. Le gave necessary conditions for the existence of exceptional solutions which were refined recently by H. Yang and R.-Q. Fu. In this paper we give a unified simple proof of the theorem of Le-Yang-Fu. Next we give necessary conditions for the existence of exceptional solutions in the case \(v=2,\ u\) is an odd prime. As an application we show the truth of the Jesmanowicz conjecture for all prime values \(u < 100\).


Author(s):  
Li Jiang

The 3x+1 problem is a problem of continuous iteration for integers. According to the basic theorem of arithmetic and the way of iteration, we derive a general formula for continuous iteration for odd integers. Through this formula, we can construct a loop iteration equation and obtain the result of the equation: the equation has only one positive integer solution. In addition, this general formula can be converted into a linear indeterminate equation. The process of solving this equation shows that the relationship between the iteration result and the odd number being iterated is linear. Extending this result to all positive even numbers, we get the answer to the 3x + 1 question.


2019 ◽  
Vol 103 (556) ◽  
pp. 101-110
Author(s):  
Ken Surendran ◽  
Desarazu Krishna Babu

There are recursive expressions (see [1]) for sequentially generating the integer solutions to Pell's equation:p2 −Dq2 = 1, whereDis any positive non-square integer. With known positive integer solutionp1 andq1 we can compute, using these recursive expressions,pnandqnfor alln> 1. See Table in [2] for a list of smallest integer, orfundamental, solutionsp1 andq1 forD≤ 128. These (pn,qn) pairs also formrational approximationstothat, as noted in [3, Chapter 3], match with convergents (Cn=pn/qn) of the Regular Continued Fractions (RCF, continued fractions with the numerator of all fractions equal to 1) for.


2014 ◽  
Vol 2014 ◽  
pp. 1-3 ◽  
Author(s):  
Yahui Yu ◽  
Xiaoxue Li

Letbandcbe fixed coprime odd positive integers withmin{b,c}>1. In this paper, a classification of all positive integer solutions(x,y,z)of the equation2x+by=czis given. Further, by an elementary approach, we prove that ifc=b+2, then the equation has only the positive integer solution(x,y,z)=(1,1,1), except for(b,x,y,z)=(89,13,1,2)and(2r-1,r+2,2,2), whereris a positive integer withr≥2.


2014 ◽  
Vol 90 (1) ◽  
pp. 9-19 ◽  
Author(s):  
TAKAFUMI MIYAZAKI ◽  
NOBUHIRO TERAI

AbstractLet $m$, $a$, $c$ be positive integers with $a\equiv 3, 5~({\rm mod} \hspace{0.334em} 8)$. We show that when $1+ c= {a}^{2} $, the exponential Diophantine equation $\mathop{({m}^{2} + 1)}\nolimits ^{x} + \mathop{(c{m}^{2} - 1)}\nolimits ^{y} = \mathop{(am)}\nolimits ^{z} $ has only the positive integer solution $(x, y, z)= (1, 1, 2)$ under the condition $m\equiv \pm 1~({\rm mod} \hspace{0.334em} a)$, except for the case $(m, a, c)= (1, 3, 8)$, where there are only two solutions: $(x, y, z)= (1, 1, 2), ~(5, 2, 4). $ In particular, when $a= 3$, the equation $\mathop{({m}^{2} + 1)}\nolimits ^{x} + \mathop{(8{m}^{2} - 1)}\nolimits ^{y} = \mathop{(3m)}\nolimits ^{z} $ has only the positive integer solution $(x, y, z)= (1, 1, 2)$, except if $m= 1$. The proof is based on elementary methods and Baker’s method.


Author(s):  
K. L. Yakuto

The problem of the positive integer solution of the equation Xn = A for different-order matrices is important to solve a large range of problems related to the modeling of economic and social processes. The need to solve similar problems also arises in areas such as management theory, dynamic programming technique for solving some differential equations. In this connection, it is interesting to question the existence of positive and positive integer solutions of the nonlinear equations of the form Xn = A for different-order matrices in the case of the positive integer n. The purpose of this work is to explore the possibility of using analytical methods to obtain positive integer solutions of nonlinear matrix equations of the form Xn = A where A, X are the third-order matrices, n is the positive integer. Elements of the original matrix A are integer and positive numbers. The present study found that when the root of the nth degree of the third-order matrix will have zero diagonal elements and nonzero and positive off-diagonal elements, the root of the nth degree of the third-order matrix will have two zero diagonal elements and nonzero positive off-diagonal elements. It was shown that to solve the problem of finding positive integer solutions of the matrix equation for third-order matrices in the case of the positive integer n, the analytical techniques can be used. The article presents the formulas that allow one to find the roots of positive integer matrices for n = 3,…,5. However, the methodology described in the article can be adopted to find the natural roots of the third-order matrices for large n. 


Sign in / Sign up

Export Citation Format

Share Document