scholarly journals Near-Fault Seismic Response Analysis of Bridges Considering Girder Impact and Pier Size

Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 704
Author(s):  
Wenjun An ◽  
Guquan Song ◽  
Shutong Chen

Given the influence of near-fault vertical seismic action, we established a girder-spring-damping-rod model of a double-span continuous girder bridge and used the transient wave function expansion method and indirect modal function method to calculate the seismic response of the bridge. We deduced the theoretical solution for the vertical and longitudinal contact force and displacement response of the bridge structure under the action of the near-fault vertical seismic excitation, and we analyzed the influence of the vertical separation of the bridge on the bending failure of the pier. Our results show that under the action of a near-fault vertical earthquake, pier-girder separation will significantly alter the bridge’s longitudinal displacement response, and that neglecting this separation may lead to the underestimation of the pier’s bending damage. Calculations of the bending moment at the bottom of the pier under different pier heights and cross-sectional diameters showed that the separation of the pier and the girder increases the bending moment at the pier’s base. Therefore, the reasonable design of the pier size and tensile support bearing in near-fault areas may help to reduce longitudinal damage to bridges.

2012 ◽  
Vol 461 ◽  
pp. 593-596
Author(s):  
Li Na Zhang ◽  
Feng Chen Li ◽  
Jian Feng Wu ◽  
Wei Bing Luo

For the problem of analysis of earthquake response of cable-stayed tower bridge, the foundation is given as the rigid consolidation, do not consider the interaction of soil and structure, the finite element software ABAQUS is used for seismic response analysis. Taking the TCU052 and EI Centro wave which have different characteristics as the input of bridge tower, first to carry out the modal analysis of bridge tower structure, get various order of modal frequency of the bridge tower, then analyses the displacement response of the top of bridge tower in the bridge direction, the results showed that, under the pulse type seismic action the displacement response of bridge tower of large span cable-stayed bridge are increased.


2012 ◽  
Vol 461 ◽  
pp. 611-614
Author(s):  
Li Na Zhang ◽  
Feng Chen Li ◽  
Ou Yang ◽  
Cai Hua Wang ◽  
Jin Wang

For the problem of analysis of earthquake response of cable-stayed tower bridge, the foundation is given as the rigid consolidation, do not consider the interaction of soil and structure, the finite element software ABAQUS is used for seismic response analysis. Taking the TCU052 and EI Centro wave which have different characteristics as the input of bridge tower, first to carry out the modal analysis of bridge tower structure, get various order of modal frequency of the bridge tower, then analyses the displacement response of the top of bridge tower in the bridge direction, the results showed that, under the pulse type seismic action the displacement response of bridge tower of large span cable-stayed bridge are increased.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 692
Author(s):  
Wenjun An ◽  
Guquan Song

To study the influence of the near-fault vertical earthquake, the beam-spring-damper-pier model is used to simulate the double-span continuous beam bridge. The transient wave function expansion method and the indirect mode function method are used to calculate the seismic response of the bridge. The theoretical solutions of the contact force and displacement response of the bridge under vertical earthquake excitation near-fault are derived. By using piers with three different heights, the influence of vertical separation on pier-bending failure is analyzed reasonably. The results show that under the near-fault earthquake action, the split has a certain influence on the pier failure. Moreover, the stiffness and damping of the bearing have an influence on the pier failure, and the change of the maximum pier height has different effects. Therefore, for bridges of different sizes, it is of great significance to select the appropriate stiffness and damping bearings to reduce pier failure.


2011 ◽  
Vol 255-260 ◽  
pp. 962-966
Author(s):  
Fan Xing ◽  
Lin Zhao ◽  
Ya Zhe Xing

In view of huge destructibility of the near-fault ground motions, structures with long natural vibration period are liable to fall into nonlinear reaction stage. Based on a full understanding of the near-fault seismic spectrum characteristics, the out-of-plane seismic response of a long span concrete-filled steel tube (CFST) arch bridge was studied in depth, and the research result could offer a reference for near-fault aseismic design.


2013 ◽  
Vol 540 ◽  
pp. 141-152
Author(s):  
Hang Sun ◽  
De Jun Wang ◽  
Yong Li

Although the seismic response analysis under the multi-excitation was widely focused on the long-span flexible bridges, it is still necessary to pay more attention to this point of continuous girder bridges since the dynamic behavior of this type of bridges are different with either long-span bridges or simple support bridges. Based on the nonlinear dynamic time history analysis, a four-span continuous beam FEM was built, and the effect of excitation types and structure size on seismic response was studied. And results indicate that the structural performance of continuous girder bridges is sensitive with the space correlation of different location of seismic excitation. So its necessary to consider the space effect of excitation while carrying out a seismic design of continuous beam.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Chunyang Liu ◽  
Peng Sun ◽  
Ruofan Shi

This paper proposes two kinds of arrangements of buckling-restrained brace dampers to strengthen soft-first-storey structures locally. Two types of near-fault ground motion, with and without pulse, were selected for a study of the seismic response characteristics of soft-first-storey structures with and without buckling-restrained brace dampers, and the effects of different bracing arrangements on improving the seismic performance of soft-first-storey structures were recognized. The results show that, compared with pulse-free ground motion, near-fault pulsed ground motion results in a more severe seismic response in soft-first-storey frame structures, leading to more serious and rapid destruction of the main structure. Buckling-restrained brace dampers have an obvious energy dissipation effect, play a better role in protecting the main structure, and have good practicality. Compared with structures in which the buckling-restrained brace dampers are arranged only on the bottommost layer, the bottom-four-layer-support structure is more advantageous in terms of seismic performance.


2011 ◽  
Vol 243-249 ◽  
pp. 4052-4055
Author(s):  
Li Dong Zhao ◽  
Bo Song

In earthquake engineering, researchers have found that many structures were not damaged after strong ground motions because of the rocking effect. In order to reveal the potential application value of the uplift effect on seismic isolation, it will be using numerical simulation software OpenSees to research the seismic response of pier considering uplift. Building the pier’s finite element model and considering the plasticity and nonlinear of the pier and soil spring, the ground motion from El Centro and TCU101 are taken as the input respectively. Through analyzing the result, it is shown that at the base of the pier the maximum bending moment is reduced by 36.93% and 46.70%, and the maximum curvature is also reduced by 78.42% and 87.12% respectively. Meanwhile, the maximum horizontal acceleration at the top of the pier is decreased 12.60% and 16.90%. The uplift effect significantly reduces the plastic deformation and plays a base-isolated role according to the results. It has also found that the earthquakes with velocity pulse effect are dangerous to the structures.


2014 ◽  
Vol 501-504 ◽  
pp. 1453-1459
Author(s):  
Kai Zhong Xie ◽  
Xian Zhi Huang ◽  
Feng Fan ◽  
Jun Huang

Reinforced concrete rib arch bridge is widely used in southwest of china, therefore, it is practically significant to assess the seismic performance of this kind of bridge. In this paper, a deck-type double ribs arch bridge which has eleven large continuous spans is taken for instance. The finite element calculation models for the bridge are established considering arch effect. The M-method principle is used to simulate the pile-soil-structure interaction (PSSI), and multiple Ritz vector method is introduced to analyze the dynamic characteristics. Moreover, the seismic response of arch bridge is analyzed by the response spectrum method. Numeral results show that, the dominant vibration mode of the Multi-span continuous deck-type reinforced concrete rib arch bridge is out-of-plane mode, owing to the weak lateral stiffness. The arch effect can reinforce the longitudinal stiffness of bridge, but weaken the lateral stiffness. Combined with horizontal direction orthogonal seismic action, arch effect can significantly reduce the axial force of rib, while increase the moment and shear of the arch foot and the displacement of the arch. The rib arch, the 1/4 points and the junctions of ribs and beams are the seismic control points. PSSI is the key factor of bridge seismic.


Sign in / Sign up

Export Citation Format

Share Document