scholarly journals Advanced Direct Vector Control Method for Optimizing the Operation of a Double-Powered Induction Generator-Based Dual-Rotor Wind Turbine System

Mathematics ◽  
2021 ◽  
Vol 9 (19) ◽  
pp. 2403
Author(s):  
Habib Benbouhenni ◽  
Nicu Bizon

The main goal of this paper is to increase the active/reactive power extracted from variable-speed dual-rotor wind power (DRWP) based on doubly-fed induction generators (DFIG) by optimizing its operation using advanced direct vector control. First, the dynamic modeling of different parts of the system is introduced. The DFIG is modeled in the Park reference system. After that, the control techniques are introduced in detail. Direct vector command (DVC) with four-level fuzzy pulse width modulation (FPWM) is used to control the rotor current, thereby controlling the reactive power and active power of the generator. Then, use the neural network design to replace the traditional proportional-integral (PI) controller. Finally, the Matlab/Simulink software is used for simulation to prove the effectiveness of the command strategy using 1.5 MW DRWP. The results show good performance in terms of response time, stability, and precision in following the reference under variable wind speed conditions. In addition, the total harmonic distortion (THD) value of stator current is about 0.13%, being a bit less than other THD values reported in the literature.

Author(s):  
Habib Benbouhenni

In this work, we present a comparative study between space vector modulation (SVM) and fuzzy pulse width modulation (FPWM) technique in neuro-sliding mode control (NSMC) of stator reactive and stator active power control of the doubly fed induction generator (DFIG) for wind turbine system (WTS). Two controls approach using NSMC-SVM and NSMC-FPWM control scheme are proposed and compared. The validity of the proposed control techniques is verified by simulation tests of a DFIG. The reactive power, rotor current and stator active power is determined and compared in the above strategies. The obtained results showed that the proposed NSMC with FPWM strategy has stator reactive and active power with low powers ripples and low rotor current harmonic distortion than SVM technique.


Author(s):  
Habib Benbouhenni

<span>In this paper, we present a comparative study between two-level space vector pulse width modulation (SVPWM) and seven-level SVPWM strategy in direct vector control (DVC) of a doubly fed induction generator (DFIG) based wind energy conversion systems (WECSs). The feasibility and effectiveness of the two strategies are demonstrated by simulation results. The obtained results showed that, the proposed DVC strategy with Seven-level SVPWM technique have stator and rotor current with low harmonic distortion and low active and reactive powers ripples than two-level SVPWM strategy.</span>


Author(s):  
H. Benbouhenni ◽  
A. Driss ◽  
S. Lemdani

Aim. This paper presents the minimization of reactive and active power ripples of doubly fed induction generators using super twisting algorithms and pulse width modulation based on neuro-fuzzy algorithms. Method. The main role of the indirect active and reactive power control is to regulate and control the reactive and active powers of doubly fed induction generators for variable speed dual-rotor wind power systems. The indirect field-oriented control is a classical control scheme and simple structure. Pulse width modulation based on an adaptive-network-based fuzzy inference system is a new modulation technique; characterized by a simple algorithm, which gives a good harmonic distortion compared to other techniques. Novelty. adaptive-network-based fuzzy inference system-pulse width modulation is proposed. Proposed modulation technique construction is based on traditional pulse width modulation and adaptive-network-based fuzzy inference system to obtain a robust modulation technique and reduces the harmonic distortion of stator current. We use in our study a 1.5 MW doubly-fed induction generator integrated into a dual-rotor wind power system to reduce the torque, current, active power, and reactive power ripples. Results. As shown in the results figures using adaptive-network-based fuzzy inference system-pulse width modulation technique ameliorate effectiveness especially reduces the reactive power, torque, stator current, active power ripples, and minimizes harmonic distortion of current (0.08 %) compared to classical control.


2018 ◽  
Vol 11 (2) ◽  
pp. 13-19
Author(s):  
Habib Benbouhenni ◽  
Zinelaabidine Boudjema ◽  
Abdelkader Belaidi

Abstract In this work, we present a comparative study between four-level neural space vector modulation (4L-NSVM) and three-level neural space vector modulation (3L-NSVM) technique in indirect vector control (IVC) of reactive and active power control of a doubly fed induction generator (DFIG) for wind energy conversion systems (WECSs). Two controls techniques using IVC-4L-NSVM and IVC-3L-NSVM are proposed and compared. The validity of the proposed control schemes is verified by simulation tests of a DFIG-based wind turbine system (WTSs). The stator active power, stator reactive power and rotor current is determined and compared in the above strategies. The obtained results showed that the proposed IVC with 4L-NSVM technique have reactive and stator active power with low powers ripples and low rotor current harmonic distortion than 3L-NSVM technique.


Author(s):  
H. Hachemi ◽  
A. Allali ◽  
B. Belkacem

This paper treats the modeling, and the control of a wind power system based on a doubly fed induction generator DFIG, the stator is directly connected to the grid, while the rotor is powered by multilevel inverters. In order to get a decoupled system of controlfor an independently transits of active and reactive power, a vector control method based on stator flux orientation SFOC is considered: Direct vector control based on PI controllers. Cascaded H-bridge CHBI multilevel inverters are used in the rotor circuit to study its effect on supply power quality. All simulation models are built in MATLAB/Simulink software. Results and waveforms clearly show the effectiveness of vector control strategy. Finally, performances of the system will tested and compared for each levels of inverter.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Xiangshun Li ◽  
Jianghua Lu

A novel control method is proposed for the three-phase four-wire four-leg active power filter (APF) to realize the accurate and real-time compensation of harmonic of power system, which combines space vector pulse width modulation (SVPWM) with triangle modulation strategy. Firstly, the basic principle of the APF is briefly described. Then the harmonic and reactive currents are derived by the instantaneous reactive power theory. Finally simulation and experiment are built to verify the validity and effectiveness of the proposed method. The simulation results show that the response time for compensation is about 0.025 sec and the total harmonic distortion (THD) of the source current of phaseAis reduced from 33.38% before compensation to 3.05% with APF.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Ali Goodarzi ◽  
Ali Mohammad Ranjbar ◽  
Moslem Dehghani ◽  
Mina GhasemiGarpachi ◽  
Mohammad Ghiasi

AbstractIn this study, an auxiliary damping controller based on a robust controller considering the active and reactive power control loops for a doubly-fed induction generator for wind farms is proposed. The presented controller is able to improve the inter-area oscillation damping. In addition, the proposed controller applies only one accessible local signal as the input; however, it can improve the inter-area oscillation damping and, consequently the system stability for the various working conditions and uncertainties. The oscillatory modes of the system are appointed using the linear analysis. Then, the controller’s parameters are determined using the robust control approaches ($${H}_{\infty }/{H}_{2})$$ H ∞ / H 2 ) with the pole placement and linear matrix inequality method. The results of the modal analysis and time-domain simulations confirm that the controller develops the inter-area oscillation damping under the various working conditions and uncertainties.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1582
Author(s):  
Yingzong Jiao ◽  
Feng Li ◽  
Hui Dai ◽  
Heng Nian

This paper presents the analysis and mitigation of sub-synchronous resonance (SSR) for doubly fed induction generators (DFIG) under virtual synchronous generator (VSG) control, based on impedance methods. VSGs are considered to have grid-supporting ability and good stability in inductance-based weak grids, and are implemented in renewable power generations, including DFIG systems. However, stability analyses of VSGs for DFIG connecting with series capacitor compensation are absent. Therefore, this paper focuses on the analysis and mitigation of SSR for DFIG under VSG control. Impedance modeling of DFIG systems is used to analyze SSR stability. Based on impedance analysis, the influence of VSG control parameters and the configuration of damping factor of reactive power are discussed. Next, a parameter configuration method to mitigate SSR is proposed. Finally, time-domain simulation and fast fourier transform (FFT) results are given to validate the correctness and effectiveness of the impedance model and parameter configuration methods.


2014 ◽  
Vol 678 ◽  
pp. 417-422
Author(s):  
Yu Liu ◽  
Zhong Chao Wei ◽  
Xin Mai Gao ◽  
Xi Chen ◽  
Xue Fan Wang ◽  
...  

To reliably realize the grid-connection generating of brushless doubly-fed machine (BDFM), this paper firstly focuses on some essential issues, such as amplitude, frequency and phase of power winding voltage; the control of active and reactive power. Deducing the control method of power winding voltage amplitude, frequency and phase based on basic electrical machine principle. Referring synchronous machine theory, the modulation principle of active and reactive power for BDFM is obtained. Then, the connection progress to grid is researched by setting up the control platform based on DSP. The experimental results show that the amplitude, frequency and phase of power winding voltage are effectively controlled and the active and reactive power could be regulated when adopting the decoupled voltage control strategy. This control method provides a practical realization manner in the application of wind power generation and so on.


Sign in / Sign up

Export Citation Format

Share Document