scholarly journals Distributed Mechanism for Detecting Average Consensus with Maximum-Degree Weights in Bipartite Regular Graphs

Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 3020
Author(s):  
Martin Kenyeres ◽  
Jozef Kenyeres

In recent decades, distributed consensus-based algorithms for data aggregation have been gaining in importance in wireless sensor networks since their implementation as a complementary mechanism can ensure sensor-measured values with high reliability and optimized energy consumption in spite of imprecise sensor readings. In the presented article, we address the average consensus algorithm over bipartite regular graphs, where the application of the maximum-degree weights causes the divergence of the algorithm. We provide a spectral analysis of the algorithm, propose a distributed mechanism to detect whether a graph is bipartite regular, and identify how to reconfigure the algorithm so that the convergence of the average consensus algorithm is guaranteed over bipartite regular graphs. More specifically, we identify in the article that only the largest and the smallest eigenvalues of the weight matrix are located on the unit circle; the sum of all the inner states is preserved at each iteration despite the algorithm divergence; and the inner states oscillate between two values close to the arithmetic means determined by the initial inner states from each disjoint subset. The proposed mechanism utilizes the first-order forward and backward finite-difference of the inner states (more specifically, five conditions are proposed) to detect whether a graph is bipartite regular or not. Subsequently, the mixing parameter of the algorithm can be reconfigured the way it is identified in this study whereby the convergence of the algorithm is ensured in bipartite regular graphs. In the experimental part, we tested our mechanism over randomly generated bipartite regular graphs, random graphs, and random geometric graphs with various parameters, thereby identifying its very high detection rate and proving that the algorithm can estimate the arithmetic mean with high precision (like in error-free scenarios) after the suggested reconfiguration.

2015 ◽  
Vol 713-715 ◽  
pp. 1090-1093
Author(s):  
Yong Xiu Feng ◽  
Ai Qin Bao ◽  
Deng Yin Zhang

The existing distributed spectrum sensing algorithms usually assume that the information in interaction channel is totally correct and did not consider noise effect. To solve these problems, a new distributed cooperative spectrum sensing scheme based on average consensus is investigated in this paper. Based on minimum mean square deviation criterion, we design an iterative matrix suitable for consensus algorithm with considering the noise of interaction channel. Simulation results show that the proposed method achieves better detection performance under noise effect of interaction channel and outperforms conventional scheme by 11% at-5dB signal to noise ratio (SNR) and 0.1 false alarm probability.


1998 ◽  
Vol 9 ◽  
pp. 219-245 ◽  
Author(s):  
B. Vandegriend ◽  
J. Culberson

Using an improved backtrack algorithm with sophisticated pruning techniques, we revise previous observations correlating a high frequency of hard to solve Hamiltonian Cycle instances with the Gn,m phase transition between Hamiltonicity and non-Hamiltonicity. Instead all tested graphs of 100 to 1500 vertices are easily solved. When we artificially restrict the degree sequence with a bounded maximum degree, although there is some increase in difficulty, the frequency of hard graphs is still low. When we consider more regular graphs based on a generalization of knight's tours, we observe frequent instances of really hard graphs, but on these the average degree is bounded by a constant. We design a set of graphs with a feature our algorithm is unable to detect and so are very hard for our algorithm, but in these we can vary the average degree from O(1) to O(n). We have so far found no class of graphs correlated with the Gn,m phase transition which asymptotically produces a high frequency of hard instances.


2010 ◽  
Vol 41 (2) ◽  
pp. 129-138 ◽  
Author(s):  
P. Roushini Leely Pushpam ◽  
D. Yokesh

Let $X subset V$ be a set of vertices in a graph $G = (V, E)$. The boundary $B(X)$ of $X$ is defined to be the set of vertices in $V-X$ dominated by vertices in $X$, that is, $B(X) = (V-X) cap N(X)$. The differential $ partial(X)$ of $X$ equals the value $ partial(X) = |B(X)| - |X|$. The differential of a graph $G$ is defined as $ partial(G) = max { partial(X) | X subset V }$. It is easy to see that for any graph $G$ having vertices of maximum degree $ Delta(G)$, $ partial(G) geq Delta (G) -1$. In this paper we characterize the classes of unicyclic graphs, split graphs, grid graphs, $k$-regular graphs, for $k leq 4$, and bipartite graphs for which $ partial(G) = Delta(G)-1$. We also determine the value of $ partial(T)$ for any complete binary tree $T$.


Author(s):  
Marthe Bonamy ◽  
Nicolas Bousquet ◽  
Guillem Perarnau

Abstract Let G be a graph on n vertices and with maximum degree Δ, and let k be an integer. The k-recolouring graph of G is the graph whose vertices are k-colourings of G and where two k-colourings are adjacent if they differ at exactly one vertex. It is well known that the k-recolouring graph is connected for $k\geq \Delta+2$ . Feghali, Johnson and Paulusma (J. Graph Theory83 (2016) 340–358) showed that the (Δ + 1)-recolouring graph is composed by a unique connected component of size at least 2 and (possibly many) isolated vertices. In this paper, we study the proportion of isolated vertices (also called frozen colourings) in the (Δ + 1)-recolouring graph. Our first contribution is to show that if G is connected, the proportion of frozen colourings of G is exponentially smaller in n than the total number of colourings. This motivates the use of the Glauber dynamics to approximate the number of (Δ + 1)-colourings of a graph. In contrast to the conjectured mixing time of O(nlog n) for $k\geq \Delta+2$ colours, we show that the mixing time of the Glauber dynamics for (Δ + 1)-colourings restricted to non-frozen colourings can be Ω(n2). Finally, we prove some results about the existence of graphs with large girth and frozen colourings, and study frozen colourings in random regular graphs.


Sign in / Sign up

Export Citation Format

Share Document