scholarly journals Antiplatelet and Antithrombotic Effects of Isaridin E Isolated from the Marine-Derived Fungus via Downregulating the PI3K/Akt Signaling Pathway

Marine Drugs ◽  
2021 ◽  
Vol 20 (1) ◽  
pp. 23
Author(s):  
Ni Pan ◽  
Zi-Cheng Li ◽  
Zhi-Hong Li ◽  
Sen-Hua Chen ◽  
Ming-Hua Jiang ◽  
...  

Isaridin E, a cyclodepsipeptide isolated from the marine-derived fungus Amphichorda felina (syn. Beauveria felina) SYSU-MS7908, has been demonstrated to possess anti-inflammatory and insecticidal activities. Here, we first found that isaridin E concentration-dependently inhibited ADP-induced platelet aggregation, activation, and secretion in vitro, but did not affect collagen- or thrombin-induced platelet aggregation. Furthermore, isaridin E dose-dependently reduced thrombosis formation in an FeCl3-induced mouse carotid model without increasing the bleeding time. Mechanistically, isaridin E significantly decreased the ADP-mediated phosphorylation of PI3K and Akt. In conclusion, these results suggest that isaridin E exerts potent antithrombotic effects in vivo without increasing the risk of bleeding, which may be due to its important role in inhibiting ADP-induced platelet activation, secretion and aggregation via the PI3K/Akt pathways.

2018 ◽  
Vol 132 (6) ◽  
pp. 685-699 ◽  
Author(s):  
Zhen-Guo Ma ◽  
Xin Zhang ◽  
Yu-Pei Yuan ◽  
Ya-Ge Jin ◽  
Ning Li ◽  
...  

T-cell infiltration and the subsequent increased intracardial chronic inflammation play crucial roles in the development of cardiac hypertrophy and heart failure (HF). A77 1726, the active metabolite of leflunomide, has been reported to have powerful anti-inflammatory and T cell-inhibiting properties. However, the effect of A77 1726 on cardiac hypertrophy remains completely unknown. Herein, we found that A77 1726 treatment attenuated pressure overload or angiotensin II (Ang II)-induced cardiac hypertrophy in vivo, as well as agonist-induced hypertrophic response of cardiomyocytes in vitro. In addition, we showed that A77 1726 administration prevented induction of cardiac fibrosis by inhibiting cardiac fibroblast (CF) transformation into myofibroblast. Surprisingly, we found that the protective effect of A77 1726 was not dependent on its T lymphocyte-inhibiting property. A77 1726 suppressed the activation of protein kinase B (AKT) signaling pathway, and overexpression of constitutively active AKT completely abolished A77 1726-mediated cardioprotective effects in vivo and in vitro. Pretreatment with siRNA targetting Fyn (si Fyn) blunted the protective effect elicited by A77 1726 in vitro. More importantly, A77 1726 was capable of blocking pre-established cardiac hypertrophy in mice. In conclusion, A77 1726 attenuated cardiac hypertrophy and cardiac fibrosis via inhibiting FYN/AKT signaling pathway.


2019 ◽  
Vol 10 (2) ◽  
pp. 592-601 ◽  
Author(s):  
Xiang Li ◽  
Ze-sheng Zhang ◽  
Xiao-han Zhang ◽  
Sheng-nan Yang ◽  
Dong Liu ◽  
...  

Anthocyanins have been shown to exhibit antitumor activity in several cancersin vitroandin vivo.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Changsheng Nai ◽  
Haochen Xuan ◽  
Yingying Zhang ◽  
Mengxiao Shen ◽  
Tongda Xu ◽  
...  

The flavonoid luteolin exists in many types of fruits, vegetables, and medicinal herbs. Our previous studies have demonstrated that luteolin reduced ischemia/reperfusion (I/R) injury in vitro, which was related with sarcoplasmic reticulum Ca2+-ATPase (SERCA2a) activity. However, the effects of luteolin on SERCA2a activity during I/R in vivo remain unclear. To investigate whether luteolin exerts cardioprotective effects and to monitor changes in SERCA2a expression and activity levels in vivo during I/R, we created a myocardial I/R rat model by ligating the coronary artery. We demonstrated that luteolin could reduce the myocardial infarct size, lactate dehydrogenase release, and apoptosis during I/R injury in vivo. Furthermore, we found that luteolin inhibited the I/R-induced decrease in SERCA2a activity in vivo. However, neither I/R nor luteolin altered SERCA2a expression levels in myocardiocytes. Moreover, the PI3K/Akt signaling pathway played a vital role in this mechanism. In conclusion, the present study has confirmed for the first time that luteolin yields cardioprotective effects against I/R injury by inhibiting the I/R-induced decrease in SERCA2a activity partially via the PI3K/Akt signaling pathway in vivo, independent of SERCA2a protein level regulation. SERCA2a activity presents a novel biomarker to assess the progress of I/R injury in experimental research and clinical applications.


2018 ◽  
Vol 36 (5) ◽  
pp. 743-754 ◽  
Author(s):  
Piming Zhao ◽  
Ana E. Aguilar ◽  
Joanna Y. Lee ◽  
Lucy A. Paul ◽  
Jung H. Suh ◽  
...  

2019 ◽  
Vol 120 (10) ◽  
pp. 17887-17897 ◽  
Author(s):  
Yongchao Du ◽  
Peihua Liu ◽  
Zhi Chen ◽  
Yao He ◽  
Bo Zhang ◽  
...  

2021 ◽  
Author(s):  
Pian Gong ◽  
Yichun Zou ◽  
Wei Zhang ◽  
Qi Tian ◽  
Shoumeng Han ◽  
...  

Abstract Insulin-like growth factor 1 (IGF-1) exhibits neuroprotective properties, such as vasodilatory and anti-inflammatory effects following ischemic stroke. However, the specific molecular mechanisms of action of IGF-1 following ischemic stroke remain elusive. We wanted to explore whether IGF-1 regulates Hippo/YAP signaling pathway, potentially via activation of the PI3K/AKT signaling pathway to exert its neuroprotective effects following ischemic stroke. In the in vitro study, we used oxygen–glucose deprivation to injure cultured PC12 and SH-5YSY cells, and cortical primary neurons. Cell viability was measured using CCK-8 assay. For the in vivo analyses, Sprague–Dawley rats were subjected to middle cerebral artery occlusion; neurological function was assessed using the neurological deficit score; infarct volume was measured using triphenyltetrazolium chloride staining, and neuronal death and apoptosis was evaluated by TUNEL staining, H&E staining and Nissl staining. Western blot was used to measure the levels of YAP/TAZ, PI3K and phosphorylated AKT (p-AKT) both in vitro and in vivo. We found that IGF-1 induced activation of YAP/TAZ, which resulted in improved cell viability in vitro, and decreased neurological deficits, neuronal death and apoptosis, and cerebral infarct volume in vivo. Notably, the neuroprotective effects of IGF-1 were reversed by an inhibitor of the PI3K/AKT signaling pathway, LY294002, which not only reduced expressions of PI3K and p-AKT, but also down-regulated expression of YAP/TAZ, leading to aggravation of neurological dysfunction. These findings indicate that neuroprotective effect of IGF-1 is partly realized by up-regulation of YAP/TAZ, which is mediated by activation of the PI3K/AKT signaling pathway following cerebral ischemic stroke.


1995 ◽  
Vol 73 (02) ◽  
pp. 318-323 ◽  
Author(s):  
K Azzam ◽  
L I Garfinkel ◽  
C Bal dit Sollier ◽  
M Cisse Thiam ◽  
L Drouet

SummaryTo assess the antithrombotic effectiveness of blocking the platelet glycoprotein (GP) Ib/IX receptor for von Willebrand factor (vWF), the antiaggregating and antithrombotic effects were studied in guinea pigs using a recombinant fragment of vWF, Leu 504-Lys 728 with a single intrachain disulfide bond linking residues Cys 509-Cys 695. The inhibitory effect of this peptide, named VCL, was tested in vitro on ristocetin- and botrocetin-induced platelet aggregation and compared to the ADP-induced platelet aggregation. In vivo, the antithrombotic effect of VCL was tested in a model of laser-injured mesentery small arteries and correlated to the ex vivo ristocetin-induced platelet aggregation. In this model of laser-induced thrombus formation, five mesenteric arteries were studied in each animal, and the number of recurrent thrombi during 15 min, the time to visualization and time to formation of first thrombus were recorded.In vitro, VCL totally abolished ristocetin- and botrocetin-induced platelet aggregation, but had no effect on ADP-induced platelet aggregation. Ex vivo, VCL (0.5 to 2 mg/kg) administered as a bolus i. v. injection inhibits ristocetin-induced platelet aggregation with a duration of action exceeding 1 h. The maximum inhibition was observed 5 min after injection of VCL and was dose related. The same doses of VCL had no significant effect on platelet count and bleeding time. In vivo, VCL (0.5 to 2 mg/kg) had no effect on the appearance of the thrombi formed but produced dose-dependent inhibition of the mean number of recurrent thrombi (the maximal effect was obtained at 5 min following i. v. injection of the highest dose: 0.8 ± 0.2 thrombi versus 4 ± 0.4 thrombi in controls). The three doses of VCL increased the time in which the first thrombus in a concentration-dependent manner was formed. However, the time to visualize the first thrombus was only prolonged in the higher dose-treated group.These in-vivo studies confirm that VCL induces immediate, potent, and transient antithrombotic effects. Most importantly, this inhibition was achieved without inducing thrombocytopenia nor prolongation of the bleeding time.


Sign in / Sign up

Export Citation Format

Share Document