scholarly journals Cellulose Membranes in the Treatment of Spent Deep Eutectic Solvent Used in the Recovery of Lignin from Lignocellulosic Biomass

Membranes ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 86
Author(s):  
Vadim Ippolitov ◽  
Ikenna Anugwom ◽  
Robin van Deun ◽  
Mika Mänttäri ◽  
Mari Kallioinen-Mänttäri

Ultrafiltration was employed in the purification of spent Deep Eutectic Solvent (DES, a mixture of choline chloride and lactic acid, 1:10, respectively) used in the extraction of lignin from lignocellulosic biomass. The aim of this was to recover different lignin fractions and to purify spent solvent. The results revealed that the commercial regenerated cellulose membranes—RC70PP and Ultracel 5 kDa UF membranes—could be used in the treatment of the spent DES. The addition of cosolvent (ethanol) to the spent DES decreased solvent’s viscosity, which enabled filtration. With two-pass ultrafiltration process with 10 kDa and 5 kDa membranes about 95% of the dissolved polymeric compounds (lignin and hemicelluloses) were removed from the spent DES. The utilized membranes also showed the capability to fractionate polymeric compounds into two fractions—above and under 10,000 Da. Moreover, the 10 kDa cellulose-based membrane showed good stability during a continuous period of three weeks exposure to the solution of DES and ethanol. Its pure water permeability decreased only by 3%. The results presented here demonstrate the possibility to utilize cellulose membranes in the treatment of spent DES to purify the solvent and recover the interesting compounds.

Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2149
Author(s):  
Chan-Woo Park ◽  
Song-Yi Han ◽  
Rajkumar Bandi ◽  
Ramakrishna Dadigala ◽  
Eun-Ah Lee ◽  
...  

In this study, the effect of lignin esterification with fatty acid chloride on the properties of lignin and lignin/poly(lactic acid) (PLA) composites was investigated. Lignocellulose (Pinus densiflora S. et Z.) was treated using a deep eutectic solvent (DES) with choline chloride (ChCl)/lactic acid (LA). From the DES-soluble fraction, DES-lignin (DL) was isolated by a regeneration process. Lignin esterification was conducted with palmitoyl chloride (PC). As the PC loading increased for DL esterification, the Mw of esterified DL (EDL) was increased, and the glass transition temperature (Tg) was decreased. In DL or EDL/PLA composite films, it was observed that EDL/PLA had cleaner and smoother morphological characteristics than DL/PLA. The addition of DL or EDL in a PLA matrix resulted in a deterioration of tensile properties as compared with neat PLA. The EDL/PLA composite film had a higher tensile strength and elastic modulus than the DL/PLA composite film. DL esterification decreased water absorption with lower water diffusion coefficients. The effect of lignin esterification on improving the compatibility of lignin and PLA was demonstrated. These results are expected to contribute to the development of high-strength lignin composites.


BioResources ◽  
2017 ◽  
Vol 12 (4) ◽  
pp. 7301-7310
Author(s):  
Veronika Majová ◽  
Silvia Horanová ◽  
Andrea Škulcová ◽  
Jozef Šima ◽  
Michal Jablonský

This study aimed to resolve the issue of the lack of detailed understanding of the effect of initial lignin content in hardwood kraft pulps on pulp delignification by deep eutectic solvents. The authors used Kappa number of the concerned pulp, intrinsic viscosity, and selectivity and efficiency of delignification as the parameters of the effect. The pulp (50 g oven dry pulp) was treated with four different DESs systems based on choline chloride with lactic acid (1:9), oxalic acid (1:1), malic acid (1:1), and system alanine:lactic acid (1:9); the results were compared to those reached by oxygen delignification. The results showed that the pulp with a higher initial lignin content had a greater fraction of easily removed lignin fragments.


2018 ◽  
Vol 152 ◽  
pp. 01014 ◽  
Author(s):  
Yoon Li Wan ◽  
Yuen Jun Mun

Before the conversion of lignocellulosic biomass into fuel such as ethanol, the biomass needs to be pretreated and the yield of ethanol is highly dependent on the pretreatment efficiency. This study investigate the performance of deep eutectic solvent (DES) in pretreating sago waste which is a type of starchy biomass. The suitable type of DES in sago waste pretreatment was selected based on three criteria, which is the structural characteristic, the sugar yield during enzymatic hydrolysis and the amount of sugar loss during pretreatment. In this study, three types of DES namely Choline Chloride-Urea (ChCl-Urea), Choline Chloride-Citric acid (ChCl-CA) and Choline Chloride-Glycerol (ChCl-Glycerol) was investigated. The effect of temperature and duration on DES pretreatment was also investigated. All DES reagents were able to disrupt the structure and increase the porosity of sago waste during pretreatment. ChCl-Urea was selected in this study as it shows apparent structural disruption as examined under Scanning Electron Microscope (SEM). The highest glucose yield of 5.2 mg/mL was derived from enzymatic hydrolysis of ChCl-Urea pretreated sago waste. Moreover, reducing sugar loss during ChCl-Urea pretreatment was low, with only 0.8 mg/mL recorded. The most suitable temperature and duration for ChCl-Urea pretreatment is at 110°C and 3 hr. In a nutshell, the application of DES in pretreatment is feasible and other aspects such as the biodegradability and recyclability of DES is worth investigating to improve the economic feasibility of this pretreatment technique.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Guochao Xu ◽  
Hao Li ◽  
Wanru Xing ◽  
Lei Gong ◽  
Jinjun Dong ◽  
...  

Abstract Background Biobutanol is promising and renewable alternative to traditional fossil fuels and could be produced by Clostridium species from lignocellulosic biomass. However, biomass is recalcitrant to be hydrolyzed into fermentable sugars attributed to the densely packed structure by layers of lignin. Development of pretreatment reagents and processes for increasing surface area, removing hemicellulose and lignin, and enhancing the relative content of cellulose is currently an area of great interest. Deep eutectic solvents (DESs), a new class of green solvents, are effective in the pretreatment of lignocellulosic biomass. However, it remains challenging to achieve high titers of total sugars and usually requires combinatorial pretreatment with other reagents. In this study, we aim to develop novel DESs with high application potential in biomass pretreatment and high biocompatibility for biobutanol fermentation. Results Several DESs with betaine chloride and ethylamine chloride (EaCl) as hydrogen bond acceptors were synthesized. Among them, EaCl:LAC with lactic acid as hydrogen bond donor displayed the best performance in the pretreatment of corncob. Only by single pretreatment with EaCl:LAC, total sugars as high as 53.5 g L−1 could be reached. Consecutive batches for pretreatment of corncob were performed using gradiently decreased cellulase by 5 FPU g−1. At the end of the sixth batch, the concentration and specific yield of total sugars were 58.8 g L−1 and 706 g kg−1 pretreated corncob, saving a total of 50% cellulase. Utilizing hydrolysate as carbon source, butanol titer of 10.4 g L−1 was achieved with butanol yield of 137 g kg−1 pretreated corncob by Clostridium saccharobutylicum DSM13864. Conclusions Ethylamine and lactic acid-based deep eutectic solvent is promising in pretreatment of corncob with high total sugar concentrations and compatible for biobutanol fermentation. This study provides an efficient pretreatment reagent for facilely reducing recalcitrance of lignocellulosic materials and a promising process for biobutanol fermentation from renewable biomass.


2020 ◽  
Author(s):  
Guochao Xu ◽  
Hao Li ◽  
Wanru Xing ◽  
Lei Gong ◽  
Jinjun Dong ◽  
...  

Abstract Background: Biobutanol is promising and renewable alternative to traditional fossil fuels and could be produced by Clostridium species from lignocellulosic biomass. However, biomass is recalcitrant to be hydrolyzed into fermentable sugars attributed to the densely packed structure by layers of lignin. Development of pretreatment reagents and processes for increasing surface area, removing hemicellulose and lignin, and enhancing the relative content of cellulose is currently an area of great interest. Deep eutectic solvents (DESs), a new class of green solvents, are effective in the pretreatment of lignocellulosic biomass. However, it remains challenging to achieve high titers of total sugars and usually requires combinatorial pretreatment with other reagents. In this study, we aim to develop novel DESs with high application potential in biomass pretreatment and high biocompatibility for biobutanol fermentation.Results: Several DESs with betaine chloride and ethylamine chloride (EaCl) as hydrogen bond acceptors were synthesized. Among them, EaCl:LAC with lactic acid as hydrogen bond donor displayed the best performance in the pretreatment of corncob. Only by single pretreatment with EaCl:LAC, total sugars of as high as 53.5 g·L–1 could be reached. Consecutive batches for pretreatment of corncob were performed using gradiently decreased cellulase by 5 FPU·g–1. At the end of the sixth batch, the concentration and specific yield of total sugars were 58.8 g·L–1 and 706 g·kg–1 pretreated corncob, saving a total of 50% cellulase. Utilizing hydrolysate as carbon source, butanol titer of 10.4 g·L–1 was achieved with butanol yield of 137 g·kg–1 pretreated corncob by Clostridium saccharobutylicum DSM13864.Conclusions: Ethylamine and lactic acid based deep eutectic solvent is promising in pretreatment of corncob with high total sugar concentrations and compatible for biobutanol fermentation. This study provides an efficient pretreatment reagent for facilely reducing recalcitrance of lignocellulosic materials and a promising process for biobutanol fermentation from renewable biomass.


Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 350 ◽  
Author(s):  
Mikhail A. Smirnov ◽  
Alexandra L. Nikolaeva ◽  
Vitaly K. Vorobiov ◽  
Natalia V. Bobrova ◽  
Ivan V. Abalov ◽  
...  

The natural deep eutectic solvent (NADES) based on choline chloride (ChCl) and lactic acid (LA) was used for the preparation of chitosan (CS) films by the solution casting method. The content of NADES in films was from 0 to 82 wt%. The impact of NADES on the morphology and crystalline structure of films was investigated using scanning electron microscopy as well as wide-angle and small-angle X-ray scattering. The experimental results allow to propose CS chains swelling in NADES. FTIR spectroscopy confirms the interactions between CS and NADES components via the formation of hydrogen and ion bonds. The thermal properties of the composite films were studied by simultaneous thermogravimetric and differential thermal analysis. Thermomechanical analysis demonstrated appearance of two transitions at temperatures between −23 and −5 °C and 54–102 °C depending on NADES content. It was found that electrical conductivity of film with 82 wt% of NADES reaches 1.7 mS/cm. The influence of the composition and structure of films on the charge carriers concentration and their mobility is discussed.


2020 ◽  
Author(s):  
Guochao Xu ◽  
Hao Li ◽  
Wanru Xing ◽  
Lei Gong ◽  
Jinjun Dong ◽  
...  

Abstract Background: Biobutanol is promising and renewable alternative to traditional fossil fuels and could be produced by Clostridium species from lignocellulosic biomass. However, biomass is recalcitrant to be hydrolyzed into fermentable sugars attributed to the densely packed structure by layers of lignin. Development of pretreatment reagents and processes for increasing surface area, removing hemicellulose and lignin, and enhancing the relative content of cellulose is currently an area of great interest. Deep eutectic solvents (DESs), a new class of green solvents, are effective in the pretreatment of lignocellulosic biomass. However, it remains challenging to achieve high titers of total sugars and usually requires combinatorial pretreatment with other reagents. In this study, we aim to develop novel DESs with high application potential in biomass pretreatment and high biocompatibility for biobutanol fermentation.Results: Several DESs with betaine chloride and ethylamine chloride (EaCl) as hydrogen bond acceptors were synthesized. Among them, EaCl:LAC with lactic acid as hydrogen bond donor displayed the best performance in the pretreatment of corncob. Only by single pretreatment with EaCl:LAC, total sugars of as high as 53.5 g·L–1 could be reached. Consecutive batches for pretreatment of corncob were performed using gradiently decreased cellulase by 5 FPU·g–1. At the end of the sixth batch, the concentration and specific yield of total sugars were 58.8 g·L–1 and 706 g·kg–1 pretreated corncob, saving a total of 50% cellulase. Utilizing hydrolysate as carbon source, butanol titer of 10.4 g·L–1 was achieved with butanol yield of 137 g·kg–1 pretreated corncob by Clostridium saccharobutylicum DSM13864.Conclusions: Ethylamine and lactic acid based deep eutectic solvent is promising in pretreatment of corncob with high total sugar concentrations and compatible for biobutanol fermentation. This study provides an efficient pretreatment reagent for facilely reducing recalcitrance of lignocellulosic materials and a promising process for biobutanol fermentation from renewable biomass.


Author(s):  
Viktoria Vorobyova ◽  
Margarita Skiba

Deep eutectic solvents (DESs) are a new class of solvents that can offset some of the primary drawbacks of typical solvents and ionic liquids. They are synthesized by simply mixing the components that interact with each other through hydrogen bonds, and form a eutectic mixture with a melting point much lower than each component individually. Deep eutectic solvents is usually liquid at temperatures below 100 °C. Thanks to these great advantages, deep eutectic solvents is attracting more and more attention in many areas of research. Very recently, great attention has been paid to new pioneering attempts aiming at deep eutectic solvents into the field of chemical engineering, including membrane science and technology. Even if just a same works have been currently reported in applying deep eutectic solvents in membranes, the consideration on this new type of solvents is continuously growing. New deep eutectic solvents based on choline chloride (ChCl)–lactic acid (1:2 M ratio) was obtained and its electrochemical characteristics was studied. The synthesis of deep eutectic solvents was confirmed by FA nuclear magnetic resonance (NMR) spectrometry method. FTIR study provided further details into hydrogen bonding upon mixing. FTIR results confirmed that H-bonds, occurring between two components in deep eutectic solvents, were the main force leading to the eutectic formation. The frequency at 3221 cm−1 can be attributed to the oscillations of the O-H bond in the formation of OH-Cl-ChCl. The main physicochemical characteristics of deep eutectic solutions (density, pH) are determined. The electrochemical behavior was investigated of choline chloride (ChCl)–lactic acid deep eutectic solvent (DES) by cyclic voltammetry. The method of cyclic voltammetry found that the oxidation of deep eutectic solvents is fixed at a potential of Ea1 = 0.54 V.


Sign in / Sign up

Export Citation Format

Share Document