scholarly journals Effects of Al-Si Coating on Static and Dynamic Strength of Spot-Welded Hot-Stamping Steel Joints

Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 976
Author(s):  
Ali Afzal ◽  
Mohsen Hamedi ◽  
Chris Valentin Nielsen

Al-Si is the most popular coating used to prevent oxidation on the surfaces of hot-stamped steel sheets during the heating process. However, like other coatings, it affects the strength of the spot welds in joining the hot-stamped steel parts. In this study, the effects of Al-Si coating on the tensile strength of the resistance spot-welded joints in hot-stamped steel are discussed. Two types of 1.8 mm hot-stamped steel, in uncoated and Al-Si coated forms, were resistance spot-welded, and the tensile shear behavior of the welded joints was studied in both static and dynamic tests. To do this, a special fixture for impact tensile shear tests was designed and fabricated. In the case of the Al-Si coated steel, the presence of the molten Al-Si over the fusion zone, especially its aggregation in the edge of the weld nugget, caused a decrease in the maximum tensile load capacity and a failure of energy absorption in static and dynamic tests, respectively. Additionally, it increased the probability of changing its failure mode from pull out to interfacial fracture in the dynamic test. This study shows that the tensile strength behavior of the welded joints for the Al-Si coated hot-stamped steel is lower than the uncoated steel during static, and especially dynamic, force.

2010 ◽  
Vol 154-155 ◽  
pp. 325-328
Author(s):  
Hai Jun Yang ◽  
Yan Song Zhang ◽  
Jie Shen ◽  
Xin Min Lai

It has been proved that the initial gap has obvious influence on nugget formation, but little works focused on the effect of initial gap on the tensile strength of resistance spot welded (RSW) joints. In this paper, a 3D FE model was built for solving this question. The results show that, even though there are some fluctuations of weld diameter and tensile strength of RSW joints with initial gap, the tensile strength and weld diameter of welded joints with initial gap are still larger than that of welded joints without gap, which confirm that the influence of initial gap on tensile shear strength is little significant. The computation results agree well with experiment.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1021
Author(s):  
Yunzhao Li ◽  
Huaping Tang ◽  
Ruilin Lai

Resistance spot welded 1.2 mm (t)-thick 1400 MPa martensitic steel (MS1400) samples are fabricated and their microstructure, mechanical properties are investigated thoroughly. The mechanical performance and failure modes exhibit a strong dependence on weld-nugget size. The pull-out failure mode for MS1400 steel resistance spot welds does not follow the conventional weld-nugget size recommendation criteria of 4t0.5. Significant softening was observed due to dual phase microstructure of ferrite and martensite in the inter-critical heat affected zone (HAZ) and tempered martensite (TM) structure in sub-critical HAZ. However, the upper-critical HAZ exhibits obvious higher hardness than the nugget zone (NZ). In addition, the mechanical properties show that the cross-tension strength (CTS) is about one quarter of the tension-shear strength (TSS) of MS1400 weld joints, whilst the absorbed energy of cross-tension and tension-shear are almost identical.


2000 ◽  
Author(s):  
G. S. Booth ◽  
C. A. Olivier ◽  
S. A. Westgate ◽  
F. Liebrecht ◽  
S. Braunling

Sign in / Sign up

Export Citation Format

Share Document