scholarly journals Investigation into Biomass Tar-Based Carbon Deposits as Reduction Agents on Iron Ore Using the Tar Impregnation Method

Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1623
Author(s):  
Ariany Zulkania ◽  
Rochmadi Rochmadi ◽  
Rochim Bakti Cahyono ◽  
Muslikhin Hidayat

Increasing carbon deposits in iron ore to upgrade the reduction rate can be performed by impregnating iron ore in tar. Carbon containing iron ore was prepared from low-grade iron ore and biomass tar, which was generated from palm kernel shell (PKS) pyrolysis using the impregnation method. The optimum condition of the method was investigated by varying the tar-iron ore ratio (1 and 1.5) and impregnation time (0 and 24 h). After the carbonization of the tar–iron ore mixture in a flow-type quartz tubular fixed-bed reactor at 500 °C for an hour, the carbon deposits adhered well to surfaces of all iron ore samples. The carbon deposits increased when the ratio of tar-iron ore was enhanced. The effect of impregnation time on the formed carbon deposit only applied to the tar-iron ore ratio of 1, but it had a weak effect on the ratio of 1.5. The highest carbon content was obtained from the impregnation of a biomass tar–iron ore mixture with the ratio of 1.5 which was directly carbonized. In addition, the high water content of biomass tar affected the reformation of FeOOH at the impregnation within 24 h. Furthermore, the reduction reactivity of the obtained carbonized ore, which was observed using thermogravimetric analysis, was perceptible. The carbon deposits on iron ore were able to demote total weight loss up to 23%, compared to 8% of the dehydrated ore, during the heating process to 950 °C. The carbon content obtained from iron ore impregnation with biomass tar can act as reduction agents, thereby enhancing the reduction reactivity.

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 137
Author(s):  
Ariany Zulkania ◽  
Rochmadi Rochmadi ◽  
Muslikhin Hidayat ◽  
Rochim Bakti Cahyono

Currently, fossil fuels are still the primary fuel source and reducing agent in the steel industries. The utilization of fossil fuels is strongly associated with CO2 emissions. Therefore, an alternative solution for green steel production is highly recommended, with the use of biomass as a source of fuel and a reducing agent. Biomass’s growth consumes carbon dioxide from the atmosphere, which may be stored for variable amounts of time (carbon dioxide removal, or CDR). The pellets used in this study were prepared from a mixture of low-grade iron ore and palm kernel shells (PKS). The reducing reactivity of the pellets was investigated by combining thermogravimetric analysis (TGA) and laboratory experiments. In the TGA, the heating changes stably from room temperature to 950 °C with 5–15 °C/min heating rate. The laboratory experiments’ temperature and heating rate variations were 600–900 °C and 10–20 °C/min, respectively. Additionally, the reduction mechanism was observed based on the X-ray diffraction analysis of the pellets and the composition of the reduced gas. The study results show that increasing the heating rate will enhance the reduction reactivity comprehensively and shorten the reduction time. The phase change of Fe2O3 → Fe3O4 → FeO → Fe increases sharply starting at 800 °C. The XRD intensities of Fe compounds at a heating rate of 20 °C/min are higher than at 10 °C/min. Analysis of the reduced gas exhibits that carbon gasification begins to enlarge at a temperature of 800 °C, thereby increasing the rate of iron ore reduction. The combination of several analyses carried out shows that the reduction reaction of the mixture iron ore-PKS pellets runs optimally at a heating rate of 20 °C/min. In this heating rate, the reduced gas contains much higher CO than at the heating rate of 10 °C/min at temperatures above 800 °C, which encourages a more significant reduction rate. In addition, the same reduction degree can be achieved in a shorter time and at a lower temperature for a heating rate of 20 °C/min compared to 10 °C/min.


2011 ◽  
Vol 51 (8) ◽  
pp. 1234-1239 ◽  
Author(s):  
Kouichi Miura ◽  
Keisuke Miyabayashi ◽  
Masato Kawanari ◽  
Ryuichi Ashida

2020 ◽  
Vol 11 (4) ◽  
pp. 11592-11601

In this study, pretreatment conditions such as impregnation time and temperature and drying time and temperature for the production of the iron-cobalt-cerium catalyst with impregnation method as a first step for controlling the synthesis of a new type of three similar metal phase ratio were determined by the Taguchi method. A microtubular fixed bed reactor tested the catalysts' performance under constant conditions according to conversion. The activity and selectivity toward propylene and ethylene have been calculated. The catalyst, which impregnated at 90 °C for 4hr and dried at 120 °C for 24hr, had the best catalytic performance. According to previous studies, the catalyst calcined and the reactor test was performed in the constant and optimum condition such as calcinations in 600 °C for 6hr, reduction with H2 (flow = 30 mL.min-1) for 90 min and P~1atm and also the reaction terms was H2:CO = 1(flow H2 = 37.5 mL.min-1 and CO =37.5 mL.min-1) and p=1bar. Finally, The characterization was done by XRD, SEM, BET, and test on the precursor, optimized catalyst, and optimized catalyst after reactor tests, which all were showed the nanosized catalyst particles.


Author(s):  
Parisa Sadeghpour ◽  
Mohammad Haghighi ◽  
Mehrdad Esmaeili

Aim and Objective: Effect of two different modification methods for introducing Ni into ZSM-5 framework was investigated under high temperature synthesis conditions. The nickel successfully introduced into the MFI structures at different crystallization conditions to enhance the physicochemical properties and catalytic performance. Materials and Methods: A series of impregnated Ni/ZSM-5 and isomorphous substituted NiZSM-5 nanostructure catalysts were prepared hydrothermally at different high temperatures and within short times. X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Energy dispersive X-ray (EDX), Brunner, Emmett and Teller-Barrett, Joyner and Halenda (BET-BJH), Fourier transform infrared (FTIR) and Temperature-programmed desorption of ammonia (TPDNH3) were applied to investigate the physicochemical properties. Results: Although all the catalysts showed pure silica MFI–type nanosheets and coffin-like morphology, using the isomorphous substitution for Ni incorporation into the ZSM-5 framework led to the formation of materials with lower crystallinity, higher pore volume and stronger acidity compared to using impregnation method. Moreover, it was found that raising the hydrothermal temperature increased the crystallinity and enhanced more uniform incorporation of Ni atoms in the crystalline structure of catalysts. TPD-NH3 analysis demonstrated that high crystallization temperature and short crystallization time of NiZSM-5(350-0.5) resulted in fewer weak acid sites and medium acid strength. The MTO catalytic performance was tested in a fixed bed reactor at 460ºC and GHSV=10500 cm3 /gcat.h. A slightly different reaction pathway was proposed for the production of light olefins over impregnated Ni/ZSM-5 catalysts based on the role of NiO species. The enhanced methanol conversion for isomorphous substituted NiZSM-5 catalysts could be related to the most accessible active sites located inside the pores. Conclusion: The impregnated Ni/ZSM-5 catalyst prepared at low hydrothermal temperature showed the best catalytic performance, while the isomorphous substituted NiZSM-5 prepared at high temperature was found to be the active molecular sieve regarding the stability performance.


2019 ◽  
Author(s):  
Mohanraj G. T. ◽  
Krishneindu P. ◽  
R. P. Choudhary ◽  
Sher Singh Meena ◽  
S. M. Yusuf ◽  
...  
Keyword(s):  
Iron Ore ◽  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abdolrahim Foroutan ◽  
Majid Abbas Zadeh Haji Abadi ◽  
Yaser Kianinia ◽  
Mahdi Ghadiri

AbstractCollector type and pulp pH play an important role in the lead–zinc ore flotation process. In the current study, the effect of pulp pH and the collector type parameters on the galena and sphalerite flotation from a complex lead–zinc–iron ore was investigated. The ethyl xanthate and Aero 3418 collectors were used for lead flotation and Aero 3477 and amyl xanthate for zinc flotation. It was found that maximum lead grade could be achieved by using Aero 3418 as collector at pH 8. Also, iron and zinc recoveries and grades were increased in the lead concentrate at lower pH which caused zinc recovery reduction in the zinc concentrate and decrease the lead grade concentrate. Furthermore, the results showed that the maximum zinc grade and recovery of 42.9% and 76.7% were achieved at pH 6 in the presence of Aero 3477 as collector. For both collectors at pH 5, Zinc recovery was increased around 2–3%; however, the iron recovery was also increased at this pH which reduced the zinc concentrate quality. Finally, pH 8 and pH 6 were selected as optimum pH values for lead and zinc flotation circuits, respectively.


Author(s):  
Heng Zheng ◽  
Daniel Spreitzer ◽  
Thomas Wolfinger ◽  
Johannes Schenk ◽  
Runsheng Xu

AbstractMagnetite-based iron ore usually shows a high sticking tendency and a poor reducibility in the fluidized bed because of its dense structure. To enhance the fluidization and reduction behaviors of magnetite-based iron ore during hydrogen-induced fluidized bed reduction, the effect of a prior oxidation treatment is investigated. The results show that the untreated magnetite-based iron ore cannot be fluidized successfully in the tested temperature range between 600 °C and 800 °C. At 600 °C reduction temperature, the de-fluidization can be avoided by a prior oxidation treatment. At higher reduction temperatures, the fluidization behavior can be further improved by an addition of 0.5 wt pct MgO. Magnesiowüstite (FexMg1−xO) is formed, which decreases the contact chance of the sticky surface between particles. Regarding to the reduction rate, a prior partial oxidation is more beneficial compared to deep oxidation. The kinetic analysis shows that MgO could promote the initial reaction. The reaction rate limiting step is no longer diffusion but chemical reaction for prior partly oxidized samples. A prior partial oxidation combined with an addition of MgO is considered to be a promising pretreatment method for a successful processing of magnetite-based iron ore.


Author(s):  
Radwa A. El-Salamony ◽  
Sara A. El-Sharaky ◽  
Seham A. Al-Temtamy ◽  
Ahmed M. Al-Sabagh ◽  
Hamada M. Killa

Abstract Recently, because of the increasing demand for natural gas and the reduction of greenhouse gases, interests have focused on producing synthetic natural gas (SNG), which is suggested as an important future energy carrier. Hydrogenation of CO2, the so-called methanation reaction, is a suitable technique for the fixation of CO2. Nickel supported on yttrium oxide and promoted with cobalt were prepared by the wet-impregnation method respectively and characterized using SBET, XRD, FTIR, XPS, TPR, and HRTEM/EDX. CO2 hydrogenation over the Ni/Y2O3 catalyst was examined and compared with Co–Ni/Y2O3 catalysts, Co% = 10 and 15 wt/wt. The catalytic test was conducted with the use of a fixed-bed reactor under atmospheric pressure. The catalytic performance temperature was 350 °C with a supply of H2:CO2 molar ratio of 4 and a total flow rate of 200 mL/min. The CH4 yield was reached 67%, and CO2 conversion extended 48.5% with CO traces over 10Co–Ni/Y2O3 catalyst. This encourages the direct methanation reaction mechanism. However, the reaction mechanism over Ni/Y2O3 catalyst shows different behaviors rather than that over bi-metal catalysts, whereas the steam reforming of methane reaction was arisen associated with methane consumption besides increase in H2 and CO formation; at the same temperature reaction.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3347
Author(s):  
Arslan Mazhar ◽  
Asif Hussain Khoja ◽  
Abul Kalam Azad ◽  
Faisal Mushtaq ◽  
Salman Raza Naqvi ◽  
...  

Co/TiO2–MgAl2O4 was investigated in a fixed bed reactor for the dry reforming of methane (DRM) process. Co/TiO2–MgAl2O4 was prepared by modified co-precipitation, followed by the hydrothermal method. The active metal Co was loaded via the wetness impregnation method. The prepared catalyst was characterized by XRD, SEM, TGA, and FTIR. The performance of Co/TiO2–MgAl2O4 for the DRM process was investigated in a reactor with a temperature of 750 °C, a feed ratio (CO2/CH4) of 1, a catalyst loading of 0.5 g, and a feed flow rate of 20 mL min−1. The effect of support interaction with metal and the composite were studied for catalytic activity, the composite showing significantly improved results. Moreover, among the tested Co loadings, 5 wt% Co over the TiO2–MgAl2O4 composite shows the best catalytic performance. The 5%Co/TiO2–MgAl2O4 improved the CH4 and CO2 conversion by up to 70% and 80%, respectively, while the selectivity of H2 and CO improved to 43% and 46.5%, respectively. The achieved H2/CO ratio of 0.9 was due to the excess amount of CO produced because of the higher conversion rate of CO2 and the surface carbon reaction with oxygen species. Furthermore, in a time on stream (TOS) test, the catalyst exhibited 75 h of stability with significant catalytic activity. Catalyst potential lies in catalyst stability and performance results, thus encouraging the further investigation and use of the catalyst for the long-run DRM process.


Catalysts ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 553
Author(s):  
Mansurbek Urol ugli Abdullaev ◽  
Sungjune Lee ◽  
Tae-Wan Kim ◽  
Chul-Ung Kim

Among the zeolitic catalysts for the ethylene-to-propylene (ETP) reaction, the SSZ-13 zeolite shows the highest catalytic activity based on both its suitable pore architecture and tunable acidity. In this study, in order to improve the propylene selectivity further, the surface of the SSZ-13 zeolite was modified with various amounts of tungsten oxide ranging from 1 wt% to 15 wt% via a simple incipient wetness impregnation method. The prepared catalysts were characterized with several analysis techniques, specifically, powder X-ray diffraction (PXRD), Raman spectroscopy, temperature-programmed reduction of hydrogen (H2-TPR), temperature-programmed desorption of ammonia (NH3-TPD), inductively coupled plasma-atomic emission spectroscopy (ICP-AES), and N2 sorption, and their catalytic activities were investigated in a fixed-bed reactor system. The tungsten oxide-modified SSZ-13 catalysts demonstrated significantly improved propylene selectivity and yield compared to the parent H-SSZ-13 catalyst. For the tungsten oxide loading, 10 wt% loading showed the highest propylene yield of 64.9 wt%, which was 6.5 wt% higher than the pristine H-SSZ-13 catalyst. This can be related to not only the milder and decreased strong acid sites but also the diffusion restriction of bulky byproducts, as supported by scanning transmission electron microscopy-energy dispersive X-ray spectroscopy (STEM-EDS) observation.


Sign in / Sign up

Export Citation Format

Share Document