scholarly journals Study on the Bonding Mechanism of Copper-Low Carbon Steel for Casting Compounding Process

Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1818
Author(s):  
Huirong Li ◽  
Yueying He ◽  
Haichao Zhang ◽  
Tao Ma ◽  
Yungang Li

The casting compounding process for copper-steel composite material has broad prospects of application, but due to the lack of supporting theories (especially the bonding mechanism of copper-steel at high temperatures), it is developing slowly. In this research, copper-steel composite materials for different casting temperatures have been prepared by the casting compound process. The results show that, for the casting compound process, the stable copper-steel transition layer can be formed in a short time, and the bonding of copper and low carbon steel is the result of both the diffusion of Cu in low carbon steel and the dissolution of Fe in molten copper. The diffusion coefficient of Cu in the low carbon steel is mainly concentrated in the range of 4.0 × 10−15–8.0 × 10−14 m2/s. However, for casting compound process of copper-steel, as the temperature rises the thickness of the copper-steel transition layer gradually decreases, while the Fe content in the copper layer gradually increases. At the same time, the analysis of the glow discharge results shows that, during the solid-liquid composite process of copper-steel, the element C in steel has a great influence. As the temperature rises, the segregation of C intensifies seriously; the peak of the C content moves toward the copper side and its value is gradually increases. The segregation of C would reduce the melting point of the steel and cause irregular fluctuations of the diffusion of Cu in low carbon steel. Therefore, a relatively lower molten copper temperature is more conducive to the preparation of copper-steel composite materials.

2021 ◽  
Vol 63 (9) ◽  
pp. 842-847
Author(s):  
Lyaila Bayatanova ◽  
Bauyrzhan Rakhadilov ◽  
Sherzod Kurbanbekov ◽  
Мazhyn Skakov ◽  
Natalya Popova

Abstract This work shows the results of research of the fine and dislocation structure of the transition layer of 18CrNi3Mo low-carbon steel after the influence of electrolytic plasma. Conducted research has shown that the modified steel layer, as a result of carbonitriding, was multiphase. Quantitative estimates were made for carbonitride М23(С,N)6 in various morphological components of α-martensite and on average by material in the transition layer of nitro-cemented steel. It was established that α-phase is tempered martensite after nitrocementation. Released martensite is represented by batch, or lath and lamellar low-temperature and high-temperature martensite. Inside the tempered martensitic crystals, lamellar cementite precipitates are simultaneously present, and residual austenite is found along the boundaries of the martensitic rails and plates of low-temperature martensite. It was determined that inside the crystals of all morphological components of α-martensite there are particles of carbonitride М23(С,N)6.


2003 ◽  
Vol 21 (1) ◽  
pp. 101-108 ◽  
Author(s):  
Muneharu KUTSUNA ◽  
Manoj RATHOD ◽  
Yoritada KOMODA ◽  
Yukihiko KAGOHARA

Sign in / Sign up

Export Citation Format

Share Document