scholarly journals Study of the Effect of a Plug with Torsion Channels on the Mixing Time in a Continuous Casting Ladle Water Model

Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1942
Author(s):  
Gerardo Aguilar ◽  
Gildardo Solorio-Diaz ◽  
Alicia Aguilar-Corona ◽  
José Angel Ramos-Banderas ◽  
Constantin A. Hernández ◽  
...  

The use of porous plugs in injecting gas through the bottom of a ladle forms vertical plumes in a very similar way to a truncated cone. The gas plume when exiting the plug has a smaller diameter compared to that formed in the upper zone of the ladle because inertial forces predominate over buoyancy forces in this zone. In addition, the magnitude of the plume velocity is concentrated in an upward direction, which increases the likelihood of low velocity zones forming near the bottom of the ladle, especially in lower corners. In this work, a plug with spiral-shaped channels with different torsion angles is proposed, with the objective that the gas, when passing through them, has a tangential velocity gain or that the velocity magnitude is distributed in the three axes and does not just focus on the upward direction, helping to decrease low velocity zones near the bottom of the ladle for better mixing times. For the experimentation, we worked in a continuous casting ladle water model with two configuration injections, which in previous works were reported as the most efficient in mixing the steel in this ladle. The results obtained using the PIV technique (particle image velocimetry) and conductimetry technique indicate that the plugs with the torsion channels at angles of 60° and 120° improve the mixing times for the two injection configurations.

2007 ◽  
Vol 30 (7) ◽  
pp. 640-648 ◽  
Author(s):  
R. Kaminsky ◽  
K. Dumont ◽  
H. Weber ◽  
M. Schroll ◽  
P. Verdonck

The aim of this study was to validate the 2D computational fluid dynamics (CFD) results of a moving heart valve based on a fluid-structure interaction (FSI) algorithm with experimental measurements. Firstly, a pulsatile laminar flow through a monoleaflet valve model with a stiff leaflet was visualized by means of Particle Image Velocimetry (PIV). The inflow data sets were applied to a CFD simulation including blood-leaflet interaction. The measurement section with a fixed leaflet was enclosed into a standard mock loop in series with a Harvard Apparatus Pulsatile Blood Pump, a compliance chamber and a reservoir. Standard 2D PIV measurements were made at a frequency of 60 bpm. Average velocity magnitude results of 36 phase-locked measurements were evaluated at every 10° of the pump cycle. For the CFD flow simulation, a commercially available package from Fluent Inc. was used in combination with in-house developed FSI code based on the Arbitrary Lagrangian-Eulerian (ALE) method. Then the CFD code was applied to the leaflet to quantify the shear stress on it. Generally, the CFD results are in agreement with the PIV evaluated data in major flow regions, thereby validating the FSI simulation of a monoleaflet valve with a flexible leaflet. The applicability of the new CFD code for quantifying the shear stress on a flexible leaflet is thus demonstrated. (Int J Artif Organs 2007; 30: 640–8)


2021 ◽  
Author(s):  
Michael Sandmann

Abstract Objective The aim of this work was to develop a simple optical method to determine the mixing time in a photobioreactor. The image processing method should be based on freeware tools and should not require programming skills. Results An optical method has been established to analyze images from recorded videos of mixing experiments. The basic steps are: 1. Extraction of a sequence of images from the video file; 2. Cropping of the pictures; 3. Background removal; and 4. Image analysis and mixing time evaluation based on quantification of pixel-to-pixel heterogeneity (standard deviation over pixel intensities) within a given area of interest. The novel method was generally able to track the dependency between aeration rate and mixing time within the investigated photobioreactor. In a direct comparison, a Pearson correlation coefficient of rho = 0.9957 was obtained. Gas flow rates between 10 L h−1, and 300 L h−1 resulted from mixing times of between 48 sec and 14 sec, respectively. This simple technique is applicable even without programming skills and can be used in education within high schools and in early stages of undergraduate programs.


Author(s):  
Zuliazura Mohd Salleh ◽  
Kahar Osman ◽  
Mohd Fairuz Marian ◽  
Nik Normunira Mat Hassan ◽  
Rais Hanizam Madon ◽  
...  

Experimental works for analysing flow behaviour inside human trachea has become continuous problem as the model used to study cannot imitate the real geometry of human trachea structure. As the technology develop, Rapid Prototyping (RP) become more useful in constructing the 3D model that has complexity in their geometries. RP not only offer several technologies in developing the 3D model, but also varies type of materials that can be used to manufacture the 3D model. In this study, RP technique was chosen to develop the 3D model of human trachea to do the Particle Image Velocimetry (PIV) experimental works. Material used was Vero Clear due to PIV need a model that transparent so that visualization on flow inside the model can be seen and the velocity magnitude can be capture. The geometry was adapted from 60 years old trachea patient where the images of trachea was taken by using CT-scan. MIMICS software was used to extracted the images before reconstruct the trachea into 3D model. Velocity distribution was visualized and the magnitude were taken at both left and right bronchi. From the analysis, it concluded that the distribution of airflow to the second generation of trachea was 60:40 to right and left bronchi. It follows the rules as the right bronchi need to supply more air to the right lung compared to left as the volume of right lung bigger that left lung.


Metals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 886 ◽  
Author(s):  
Kaitian Zhang ◽  
Heng Cui ◽  
Rudong Wang ◽  
Yang Liu

Particle image velocimetry (PIV) system was adopted to investigate the relationship between the mixing phenomenon and the flow field of a 210 t RH degasser by a 1:4 scale water model. The results of mixing simulation experiments indicated that the mixing time decreased with the increase of gas blowing rate. However, with the increase of Snorkel immersion depth (SID), the mixing time presented a decreasing rend firstly and then increased. The measurement of flow fields of RH ladle by PIV system can explain the phenomenon above. According to the characteristics of the flow field in RH ladle, the flow field can be divided into the mixing layer, the transition layer, and the inactive layer. On the one hand, the stirring power in RH ladle and vacuum chamber both increases with more gas blowing rate, leading to the decrease of mixing time. On the other hand, with SID increases from 400 mm to 480 mm, the gas blowing depth increase results in the mixing power increases, and the mixing time decreases at the beginning. Because of too much-molten steel in the vacuum chamber and the expanding of the inactive layer in RH ladle, however, the utilization rate of the gas driving force begins to decrease. Therefore, the mixing time started to increases with the increase of SID.


Author(s):  
Nasiruddin Shaikh ◽  
Kamran Siddiqui

An experimental study conducted to investigate the airside flow behavior within the crest-trough region over wind generated water waves is reported. Two-dimensional velocity field in a plane perpendicular to the surface was measured using particle image velocimetry (PIV) at wind speeds ranging from 1.5 m s−1 to 4.4 m s−1. The results show a reduction in the mean velocity magnitude when gravity waves appear on the surface. A sequence of consecutive velocity fields has shown the bursting and sweeping processes and the flow separation above the waves. The results also indicate that the flow dynamics in the crest-trough region are significantly different than that at greater heights. High level of turbulence was observed in this region which could not be predicted from the measurements at greater heights. Thus, it is concluded that the quantitative investigation of the flow in the immediate vicinity of the interface is vital for an improved understanding of the heat, mass and momentum exchange between air and water.


Author(s):  
Francisco Sanchez ◽  
Raul Miranda-Tello ◽  
Cesar Real-Ramirez ◽  
Luis Hoyos ◽  
Miguel Ramirez ◽  
...  

Author(s):  
Daniel Inman ◽  
David Gonzalez Cuadrado ◽  
Valeria Andreoli ◽  
Jordan Fisher ◽  
Guillermo Paniagua ◽  
...  

Abstract Particle Image Velocimetry (PIV) is a well-established technique for determining the flow direction and velocity magnitude of complex flows. This paper presents a methodology for executing this non-intrusive measurement technique to study a scaled-up turbine vane geometry within an annular cascade at engine-relevant conditions. Custom optical tools such as laser delivery probes and imaging inserts were manufactured to mitigate the difficult optical access of the test section and perform planar PIV. With the use of a burst-mode Nd: YAG laser and Photron FASTCAM camera, the frame straddling technique is implemented to enable short time intervals for the collection of image pairs and velocity fields at 10 kHz. Furthermore, custom image processing tools were developed to optimize the contrast and intensity balance of each image pair to maximize particle number and uniformity, while removing scattering and background noise. The pre-processing strategies significantly improve the vector yield under challenging alignment, seeding, and illumination conditions. With the optical and software tools developed, planar PIV was conducted in the passage of a high-pressure stator row, at mid-span, in an annular cascade. Different Mach and Reynolds number operating conditions were achieved by modifying the temperature and mass flow. With careful spatial calibration, the resultant velocity vector fields are compared with Reynolds Averaged Navier Stokes (RANS) simulations of the vane passage with the same geometry and flow conditions. Uncertainty analysis of the experimental results is also presented and discussed, along with prospects for further improvements.


Author(s):  
Deb Banerjee ◽  
Rick Dehner ◽  
Ahmet Selamet ◽  
Keith Miazgowicz ◽  
Todd Brewer ◽  
...  

Abstract Understanding the velocity field at the inlet of an automotive turbocharger is critical in order to suppress the instabilities encountered by the compressor, extend its map and improve the impeller design. In the present study, two-dimensional particle image velocimetry experiments are carried out on a turbocharger compressor without any recirculating channel to investigate the planar flow structures on a cross-sectional plane right in front of the inducer at a rotational speed of 80 krpm. The objective of the study is to investigate the flow field in front of a compressor blade passage and quantify the velocity distributions along the blade span for different mass flow rates ranging from choke (77 g/s) to deep surge (13.6 g/s). It is observed that the flow field does not change substantially from choke to about 55 g/s, where flow reversal is known to start at this speed from earlier measurements. While the tangential velocity is less than 8 m/s, the radial velocity increases along the span to 17–20 m/s near the tip at high flow rates (55–77 g/s). As the mass flow rate is reduced below 55 g/s, the radial component starts decreasing and the tangential velocity increases rapidly. From about 5 m/s at 55 g/s, the tangential velocity at the blade tip exceeds 50 m/s at 50 g/s and reaches a maximum of about 135 m/s near surge. These time-averaged distributions are similar for different angular locations in front of the blade passage and do not exhibit any substantial azimuthal variation.


Processes ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 479 ◽  
Author(s):  
Yang ◽  
Jin ◽  
Zhu ◽  
Dong ◽  
Lin ◽  
...  

Argon stirring is one of the most widely used metallurgical methods in the secondary refining process as it is economical and easy, and also an important refining method in clean steel production. Aiming at the issue of poor homogeneity of composition and temperature of a bottom argon blowing ladle molten steel in a Chinese steel mill, a 1:5 water model for 110 t ladle was established, and the mixing time and interface slag entrainment under the different conditions of injection modes, flow rates and top slag thicknesses were investigated. The flow dynamics of argon plume in steel ladle was also discussed. The results show that, as the bottom blowing argon flow rate increases, the mixing time of ladle decreases; the depth of slag entrapment increases with the argon flow rate and slag thickness; the area of slag eyes decreases with the decrease of the argon flow rate and increase of slag thickness. The optimum argon flow rate is between 36–42 m3/h, and the double porous plugs injection mode should be adopted at this time.


Sign in / Sign up

Export Citation Format

Share Document