scholarly journals Experimental and Numerical Study on the Protective Behavior of Weldox 900 E Steel Plates Impacted by Blunt-Nosed Projectiles

Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 141
Author(s):  
Yahui Shi ◽  
Ang Hu ◽  
Taisheng Du ◽  
Xinke Xiao ◽  
Bin Jia

To demonstrate the importance of incorporating Lode angle into fracture criterion in predicting the penetration resistance of high-strength steel plates, ballistic tests of blunt-nosed projectiles with a diameter of 5.95 mm impacted 4 mm thick Weldox 900 E steel plates were conducted. Impacting velocity range was 136.63~381.42 m/s. The fracture behavior and the ballistic limit velocities (BLVs) were obtained by fitting the initial-residual velocities of the projectiles. Subsequently, axisymmetric finite element (FE) models parallel to the tests were built by using Abaqus/Explicit software, and the Lode-independent Johnson–Cook (JC) and the Lode-dependent ASCE fracture criterion were incorporated into the finite element model for numerical simulation. Meanwhile, to verify the sensitivity of the mesh size in the numerical simulation, different mesh sizes were used in the shear plug area of the target. It can be found that Weldox 900 E steel has obvious mesh size sensitivity by comparing the experimental results and numerical simulation, and the JC fracture criterion and the ASCE fracture criterion predicted similar BLV for the same mesh size.

2021 ◽  
Author(s):  
Anthony Muff ◽  
Anders Wormsen ◽  
Torfinn Hørte ◽  
Arne Fjeldstad ◽  
Per Osen ◽  
...  

Abstract Guidance for determining a S-N based fatigue capacity (safe life design) for preloaded connectors is included in Section 5.4 of the 2019 edition of DNVGL-RP-C203 (C203-2019). This section includes guidance on the finite element model representation, finite element based fatigue analysis and determination of the connector design fatigue capacity by use of one of the following methods: Method 1 by FEA based fatigue analysis, Method 2 by FEA based fatigue analysis and experimental testing and Method 3 by full-scale connector fatigue testing. The FEA based fatigue analysis makes use of Appendix D.2 in C203-2019 (“S-N curves for high strength steel applications for subsea”). Practical use of Section 5.4 is illustrated with a case study of a fatigue tested wellhead profile connector segment test. Further developments of Section 5.4 of C203-2019 are proposed. This included acceptance criteria for use of a segment test to validate the FEA based fatigue analysis of a full-scale preloaded connector.


2012 ◽  
Vol 430-432 ◽  
pp. 492-496
Author(s):  
Yu Yan Liu ◽  
Hao Li ◽  
Lin Chen

Through out the establishment of heavy rail entity model and the finite element model of straightening for different kinds of heavy rail after the residual stress in straightening investigated . Analysed U75V、U76CrRE、U71Mn and U75VM the four different kinds in 8+1 level straightening of the seven regional deformation area rail head, rail waist, rail base vertical stress distribution rule.


2014 ◽  
Vol 552 ◽  
pp. 24-28
Author(s):  
Zhen Yu Xu

Taking a certain urban model of electric vehicle as example, DC04 steel plate has replaced with high-strength steel plate BH340 for some parts of the car body on the purpose of reducing the car weight; at the same time, reduced the thickness of steel plate at the replacing spots, and then set the finite element model for the car body to compare its bending rigidities before and after replacement. On the premise of satisfying car body’s bending rigidity, it could make car body to reduce a weight of 23.2KG to satisfy the requirement for lightweight design.


2012 ◽  
Vol 472-475 ◽  
pp. 1907-1910
Author(s):  
Yi Wang ◽  
Xin Jian Ma

Numerical simulation of the secondary cooling is applied to the design of continuous casting. The mathematical model for solidification process of the strand under air-mist was established and calculated with the finite element model. The model is used to calculate the feasible operating range of the continuous casting machines. The dynamic secondary cooling system has been analyzed with consideration of the thermo mechanical principles and numerical model. The adequacy of the model has been confirmed with experimental results.


2021 ◽  
Author(s):  
Long Ma ◽  
Ping Ai ◽  
ChuanSheng Xiong

Abstract Aiming at the low simulation accuracy of the numerical simulation method of the joint response of the super-large section underground comprehensive pipeline gallery under the current complicated geological conditions, a numerical simulation method of the joint response of the super-large section underground comprehensive pipe gallery joint response under the complicated geological conditions based on the finite element model was proposed. According to the analysis process for the super-large section underground comprehensive pipe gallery, the viscous boundary of the comprehensive pipe gallery is determined. Additionally, by analyzing soil and structural parameters, the optimal combined dynamic boundary is used as the model boundary. The HSS model is used to describe the constitutive structure of the soil, and by improving the Goodman element to describe the contact surface of the model, the finite element model of the joint response of the comprehensive pipe gallery is constructed. Furthermore, based on the internal force balance and deformation coordination conditions, considering the influence of the deformation shape of the joint joints and the elongation of the prestressed tendons on the finite element model, the response model of the integrated pipe gallery joint is optimized. Experimental results show that the proposed method has higher numerical simulation accuracy.


2014 ◽  
Vol 136 (2) ◽  
Author(s):  
George E. Varelis ◽  
Spyros A. Karamanos

The present paper examines the structural behavior of elongated steel hollow cylinders, referred to as tubes or pipes, subjected to large cyclic bending, through a rigorous finite element simulation. The bent cylinders exhibit cross-sectional distortion, in the form of ovalization, combined with excessive plastic deformations. Those deformations grow under repeated loading and may lead to structural instability in the form of local buckling (wrinkling) and, eventually, failure of the loaded member. The study focuses on relatively thick-walled seamless cylindrical members made of high-strength steel, which exhibit local buckling in the plastic range of the steel material. The analysis is conducted using advanced nonlinear finite element models capable of describing both geometrical and material nonlinearities. A cyclic plasticity model that adopts the “bounding surface” concept is employed. The material model is calibrated through special-purpose material testing, and implemented within ABAQUS, using a user-subroutine. The finite element model is validated by comparison with two experiments on high-strength steel tubular members. Special emphasis is given on the increase of ovalization and the gradual development of small-amplitude initial wrinkles with repeated loading cycles. A parametric numerical study is conducted, aimed at determining the effects of initial wrinkles on plastic buckling performance.


2000 ◽  
Vol 7 (6) ◽  
pp. 333-341 ◽  
Author(s):  
Lloyd Hammond ◽  
Raphael Grzebieta

This paper presents the results of a series of small-scale underwater shock experiments that measured the structural responses of submerged, fully clamped, air-backed, steel plates to a range of high explosive charge sizes. The experimental results were subsequently used to validate a series of simulations using the coupled LS-DYNA/USA finite element/boundary element codes. The modelling exercise was complicated by a significant amount of local cavitation occurring in the fluid adjacent to the plate and difficulties in modelling the boundary conditions of the test plates. The finite element model results satisfactorily predicted the displacement-time history of the plate over a range of shock loadings although a less satisfactory correlation was achieved for the peak velocities. It is expected that the predictive capability of the finite element model will be significantly improved once hydrostatic initialisation can be fully utilised with the LS-DYNA/USA software.


Author(s):  
Mario Mongiardini ◽  
Chiara Silvestri ◽  
Malcolm H. Ray

Traditionally the validation process of FE models is carried on by visually comparing two curves, respectively from an experimental test and the numerical simulation. A more rigorous way to quantitative compare two curves in the validation process would be provided by comparison metrics. In this work the component validation of the Finite Element model of a Knee-Thigh-Hip complex was carried on by quantitatively comparing the results from the experimental tests with the corresponding numerical curves. An LSDYNA finite element model of the lower extremities was developed and the condyle, pelvis and femur and components were carefully validated using three comparison metrics. The good match.


Sign in / Sign up

Export Citation Format

Share Document