scholarly journals Comparison of Micro-Mixing in Time Pulsed Newtonian Fluid and Viscoelastic Fluid

Micromachines ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 262 ◽  
Author(s):  
Zhang ◽  
Zhang ◽  
Wu ◽  
Shen ◽  
Chen ◽  
...  

Fluid mixing plays an essential role in many microfluidic applications. Here, we compare the mixing in time pulsing flows for both a Newtonian fluid and a viscoelastic fluid at different pulsing frequencies. In general, the mixing degree in the viscoelastic fluid is higher than that in the Newtonian fluid. Particularly, the mixing in Newtonian fluid with time pulsing is decreased when the Reynolds number Re is between 0.002 and 0.01, while it is enhanced when Re is between 0.1 and 0.2 compared with that at a constant flow rate. In the viscoelastic fluid, on the other hand, the time pulsing does not change the mixing degree when the Weissenberg number Wi ≤ 20, while a larger mixing degree is realized at a higher pulsing frequency when Wi = 50.

Author(s):  
Nihad Dukhan ◽  
Angel Alvarez

Wind-tunnel pressure drop measurements for airflow through two samples of forty-pore-per-inch commercially available open-cell aluminum foam were undertaken. Each sample’s cross-sectional area perpendicular to the flow direction measured 10.16 cm by 24.13 cm. The thickness in the flow direction was 10.16 cm for one sample and 5.08 cm for the other. The flow rate ranged from 0.016 to 0.101 m3/s for the thick sample and from 0.025 to 0.134 m3/s for the other. The data were all in the fully turbulent regime. The pressure drop for both samples increased with increasing flow rate and followed a quadratic behavior. The permeability and the inertia coefficient showed some scatter with average values of 4.6 × 10−8 m2 and 2.9 × 10−8 m2, and 0.086 and 0.066 for the thick and the thin samples, respectively. The friction factor decayed with the Reynolds number and was weakly dependent on the Reynolds number for Reynolds number greater than 35.


2012 ◽  
Vol 9 (3) ◽  
Author(s):  
Il Doh ◽  
Young-Ho Cho

A pumpless fuel supply using pressurized fuel with autonomous flow regulation valves is presented. Since micropumps and their control circuitry consume a portion of the electrical power generated in fuel cells, fuel supply without micropumps makes it possible to provide more efficient and inexpensive fuel cells than conventional ones. The flow regulation valves in the present system maintain the constant fuel flow rate from the pressurized fuel chamber even though the fuel pressure decreases. They autonomously adjust fluidic resistance of the channel according to fuel pressure so as to maintain constant flow rate. Compared to previous pumpless fuel supply methods, the present method offers more uniform fuel flow without any fluctuation using a simple structure. The prototypes were fabricated by a polymer micromolding process. In the experimental study using the pressurized deionized water, prototypes with pressure regulation valves showed constant flow rate of 5.38 ± 0.52 μl/s over 80 min and 5.89 ± 0.62 μl/s over 134 min, for the initial pressure in the fuel chamber of 50 and 100 kPa, respectively, while the other prototypes having the same fluidic geometry without flow regulation valves showed higher and gradually decreasing flow rate. The present pumpless fuel supply method providing constant flow rate with autonomous valve operation will be beneficial for the development of next-generation fuel cells.


Processes ◽  
2018 ◽  
Vol 6 (11) ◽  
pp. 210 ◽  
Author(s):  
Meng Zhang ◽  
Yunfeng Cui ◽  
Weihua Cai ◽  
Zhengwei Wu ◽  
Yongyao Li ◽  
...  

Fluid mixing plays an essential role in microscale flow systems. Here, we propose an active mixing approach which enhances the mixing of viscoelastic fluid flow in a simplified pore T-junction structure. Mixing is actively controlled by modulating the driving pressure with a sinusoidal signal at the two inlets of the T-junction. The mixing effect is numerically investigated for both Newtonian and viscoelastic fluid flows under different pressure modulation conditions. The result shows that a degree of mixing as high as 0.9 is achieved in viscoelastic fluid flows through the T-junction mixer when the phase difference between the modulated pressures at the two inlets is 180°. This modulation method can also be used in other fluid mixing devices.


2018 ◽  
Vol 851 ◽  
pp. 507-544 ◽  
Author(s):  
Roberto Inghilesi ◽  
Claudia Adduce ◽  
Valentina Lombardi ◽  
Federico Roman ◽  
Vincenzo Armenio

Unconfined three-dimensional gravity currents generated by lock exchange using a small dividing gate in a sufficiently large tank are investigated by means of large eddy simulations under the Boussinesq approximation, with Grashof numbers varying over five orders of magnitudes. The study shows that, after an initial transient, the flow can be separated into an axisymmetric expansion and a globally translating motion. In particular, the circular frontline spreads like a constant-flow-rate, axially symmetric gravity current about a virtual source translating along the symmetry axis. The flow is characterised by the presence of lobe and cleft instabilities and hydrodynamic shocks. Depending on the Grashof number, the shocks can either be isolated or produced continuously. In the latter case a typical ring structure is visible in the density and velocity fields. The analysis of the frontal spreading of the axisymmetric part of the current indicates the presence of three regimes, namely, a slumping phase, an inertial–buoyancy equilibrium regime and a viscous–buoyancy equilibrium regime. The viscous–buoyancy phase is in good agreement with the model of Huppert (J. Fluid Mech., vol. 121, 1982, pp. 43–58), while the inertial phase is consistent with the experiments of Britter (Atmos. Environ., vol. 13, 1979, pp. 1241–1247), conducted for purely axially symmetric, constant inflow, gravity currents. The adoption of the slumping model of Huppert & Simpson (J. Fluid Mech., vol. 99 (04), 1980, pp. 785–799), which is here extended to the case of constant-flow-rate cylindrical currents, allows reconciling of the different theories about the initial radial spreading in the context of different asymptotic regimes. As expected, the slumping phase is governed by the Froude number at the lock’s gate, whereas the transition to the viscous phase depends on both the Froude number at the gate and the Grashof number. The identification of the inertial–buoyancy regime in the presence of hydrodynamic shocks for this class of flows is important, due to the lack of analytical solutions for the similarity problem in the framework of shallow water theory. This fact has considerably slowed the research on variable-flow-rate axisymmetric gravity currents, as opposed to the rapid development of the knowledge about cylindrical constant-volume and planar gravity currents, despite their own environmental relevance.


2017 ◽  
Vol 817 ◽  
pp. 388-405 ◽  
Author(s):  
Qiang Yang ◽  
Lisa Fauci

We study the dynamics and transport of an elastic fibre in a polymeric cellular flow. The macroscopic fibre is much larger than the infinitesimal immersed polymer coils distributed in the surrounding viscoelastic fluid. Here we consider low-Reynolds-number flow using the Navier–Stokes/Fene-P equations in a two-dimensional, doubly periodic domain. The macroscopic fibre supports both tensile and bending forces, and is fully coupled to the viscoelastic fluid using an immersed boundary framework. We examine the effects of fibre flexibility and polymeric relaxation times on fibre buckling and transport as well as the evolution of polymer stress. Non-dimensional control parameters include the Reynolds number, the Weissenberg number, and the elasto-viscous number of the macroscopic fibre. We find that large polymer stresses occur in the fluid near the ends of the fibre when it is compressed. In addition, we find that viscoelasticity hinders a fibre’s ability to traverse multiple cells in the domain.


Sign in / Sign up

Export Citation Format

Share Document