scholarly journals Graphene/AlGaN/GaN RF Switch

Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1343
Author(s):  
Yevhen Yashchyshyn ◽  
Paweł Bajurko ◽  
Jakub Sobolewski ◽  
Pavlo Sai ◽  
Aleksandra Przewłoka ◽  
...  

RF switches, which use a combination of graphene and two-dimensional high-density electron gas (2DEG) in the AlGaN/GaN system, were proposed and studied in the frequency band from 10 MHz to 114.5 GHz. The switches were integrated into the coplanar waveguide, which allows them to be used in any system without the use of, e.g., bonding, flip-chip and other technologies and avoiding the matching problems. The on-state insertion losses for the designed switches were measured to range from 7.4 to 19.4 dB, depending on the frequency and switch design. Although, at frequencies above 70 GHz, the switches were less effective, the switching effect was still evident with an approximately 4 dB on–off ratio. The best switches exhibited rise and fall switching times of ~25 ns and ~17 ns, respectively. The use of such a switch can provide up to 20 MHz of bandwidth in time-modulated systems, which is an outstanding result for such systems. The proposed equivalent circuit describes well the switching characteristics and can be used to design switches with required parameters.

2021 ◽  
Vol 11 (15) ◽  
pp. 7057
Author(s):  
Lin Wang ◽  
Zhe Cheng ◽  
Zhi-Guo Yu ◽  
De-Feng Lin ◽  
Zhe Liu ◽  
...  

Half-bridge modules with integrated GaN high electron mobility transistors (HEMTs) and driver dies were designed and fabricated in this research. Our design uses flip-chip technology for fabrication, instead of more generally applied wire bonding, to reduce parasitic inductance in both the driver-gate and drain-source loops. Modules were prepared using both methods and the double-pulse test was applied to evaluate and compare their switching characteristics. The gate voltage (Vgs) waveform of the flip-chip module showed no overshoot during the turn-on period, and a small oscillation during the turn-off period. The probabilities of gate damage and false turn-on were greatly reduced. The inductance in the drain-source loop of the module was measured to be 3.4 nH. The rise and fall times of the drain voltage (Vds) were 12.9 and 5.8 ns, respectively, with an overshoot of only 4.8 V during the turn-off period under Vdc = 100 V. These results indicate that the use of flip-chip technology along with the integration of GaN HEMTs with driver dies can effectively reduce the parasitic inductance and improve the switching performance of GaN half-bridge modules compared to wire bonding.


Author(s):  
Frédéric Drillet ◽  
Jérôme Loraine ◽  
Hassan Saleh ◽  
Imene Lahbib ◽  
Brice Grandchamp ◽  
...  

Abstract This paper presents the radio frequency (RF) measurements of an SPST switch realized in gallium nitride (GaN)/RF-SOI technology compared to its GaN/silicon (Si) equivalent. The samples are built with an innovative 3D heterogeneous integration technique. The RF switch transistors are GaN-based and the substrate is RF-SOI. The insertion loss obtained is below 0.4 dB up to 30 GHz while being 1 dB lower than its GaN/Si equivalent. This difference comes from the vertical capacitive coupling reduction of the transistor to the substrate. This reduction is estimated to 59% based on a RC network model fitted to S-parameters measurements. In large signal, the linearity study of the substrate through coplanar waveguide transmission line characterization shows the reduction of the average power level of H2 and H3 of 30 dB up to 38 dBm of input power. The large signal characterization of the SPST shows no compression up to 38 dBm and the H2 and H3 rejection levels at 38 dBm are respectively, 68 and 75 dBc.


2020 ◽  
Vol 2020 (1) ◽  
pp. 000125-000130
Author(s):  
Leo Hu ◽  
Sze Pei Lim

Abstract With the leap into the 5G era, the demand for improvements in the performance of mobile phones is on the rise. This is also true for the quantity of radio frequency (RF) front-end integrated circuits (ICs), especially for RF switches and low noise amplifiers (LNA). It is well-known that improvements in performance depend on the combination of new design, package technology, and choice of materials. Ultra-low residue (ULR) flux is an innovative, truly no-clean, flip-chip bonding material. By using ULR flux, the typical water-wash cleaning process can be removed and, in some instances, package reliability can be improved as well. This simplified assembly process will help to reduce total packaging costs. This paper will discuss the application of ULR fluxes on land grid arrays (LGAs) and quad-flat no-leads/dual-flat no-leads (QFN/DFN) packages for RF front-end ICs, as well as the reflow process. The solder joint strength and reliability study will be shared as well.


2011 ◽  
Vol 3 (2) ◽  
pp. 115-120 ◽  
Author(s):  
Aline Jaimes-Vera ◽  
Ignacio Llamas-Garro ◽  
Maolong Ke ◽  
Yi Wang ◽  
Michael J. Lancaster ◽  
...  

In this paper, micromachined devices for millimeter-wave applications at U- and V-bands are presented. These structures are designed using a rectangular coaxial line built of gold-coated SU-8 photoresist layers, where the coaxial center conductor is suspended in air by stubs. The designs include a stepped coplanar waveguide (CPW)-to-coaxial transition at 63 GHz, with an insertion loss of 0.39 dB at 67.75 GHz and a return loss better than −10 dB across the band of operation between 54.7 and 70.3 GHz. Two filters have been designed; one centered at 42 GHz with a 10% bandwidth, and another at 63 GHz with a 5% bandwidth. Measured insertion losses of 0.77 and 2.59 dB were obtained for these filters, respectively. Measured return loss lower than 13.8 dB over the passband was achieved for both designs. The structures presented in this paper involve a low-cost manufacturing process suitable to produce integrated subsystems at millimeter waves.


2017 ◽  
Vol 30 (3) ◽  
pp. 285-293 ◽  
Author(s):  
Alexander Tatarenko ◽  
Darya Snisarenko ◽  
Mirza Bichurin

The possibility of computer modeling implementation of electrically controlled magnetoelectric (ME) microwave devices is considered. The computer modeling results of different structures of ME microwave devices based on layered ferrite-piezoelectric structure formed on the slot line, microstrip line and coplanar waveguide are offered. Results are reported as frequency dependencies of insertion losses of ME devices.


Sensors ◽  
2019 ◽  
Vol 19 (10) ◽  
pp. 2331
Author(s):  
Hou ◽  
Wang ◽  
Tang ◽  
Zhang

Atomic clocks provide frequency reference signals for communication, aerospace, satellite navigation and other systems. The redundant configuration of atomic clocks is necessary for ensuring the continuity and stability of the system. A radio frequency (RF) switch is usually used as a switching device in the switching system of the host atomic clock and the backup atomic clock. When the atomic clock fails, the switching between the host and the backup clock can be carried out quickly. Aiming at the fast switching requirements of atomic clock RF signals, this paper proposes a new series-shunt Positive Intrinsic Negative (PIN) switch design. In this paper, the evaluation of the RF switches is conducted by using the metrics of switching speed, insertion loss, isolation, return loss at on state and return loss at off state. Experimental result shows that the new PIN switch has better and more comprehensive performance metrics than the electromechanical switch, FET switch and conventional PIN switch. In particular, the switching speed is 53 ns faster than the conventional series-shunt PIN switch.


Proceedings ◽  
2019 ◽  
Vol 2 (13) ◽  
pp. 851
Author(s):  
Abdelhatif El Fellahi ◽  
Aurélien Mazzamurro ◽  
Jean Claude Gerbedoen ◽  
Yannick Dusch ◽  
Olivier Bou Matar ◽  
...  

A miniaturized coplanar waveguide (CPW) on a Y-cut LiNbO3 substrate operating in Radio Frequency region (RF) is proposed for studying of magnetostrictive multi-layered structure. The structure is composed of a 14 × [TbCo2 (3.7 nm)/FeCo (4 nm)] nanostructured multi-layer. Using microtechnology process, the miniaturized CPW has been designed with a 50 µm wide signal line in the frequency range from 6 MHz to 6 GHz. Electromagnetic simulations based on ®Ansys/HFSS demonstrate insertion losses less than 2 dB and show that the magnetic field is more confined in the nanostructured multi-layer placed on top of the micro-sized CPW. By using Vectorial Network Analyzer (VNA) the Ferromagnetic Resonance (FMR) is investigated from the reflection (Sii) or transmission (Sij) coefficients of scattering parameters. An inversion model is finally used to extract the complex permeability spectrum of the thin-film in a large frequency range.


2011 ◽  
Vol 10 (1-2) ◽  
pp. 229-240 ◽  
Author(s):  
Viranjay M. Srivastava ◽  
K. S. Yadav ◽  
G. Singh

Sign in / Sign up

Export Citation Format

Share Document