scholarly journals Comprehensive Schottky Barrier Height Behavior and Reliability Instability with Ni/Au and Pt/Ti/Pt/Au on AlGaN/GaN High-Electron-Mobility Transistors

Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 84
Author(s):  
Surajit Chakraborty ◽  
Tae-Woo Kim

The reliability instability of inhomogeneous Schottky contact behaviors of Ni/Au and Pt/Ti/Pt/Au gate contacts on AlGaN/GaN high-electron-mobility transistors (HEMTs) was investigated via off-state stress and temperature. Under the off-state stress condition, Pt/Ti/Pt/Au HEMT showed abruptly reduced reverse leakage current, which improved the Schottky barrier height (SBH) from 0.46 to 0.69 eV by suppression of the interfacial donor state. As the temperature increased, the reverse leakage current of the Pt/Ti/Pt/Au AlGaN/GaN HEMT at 308 K showed more reduction under the same off-state stress condition while that of the Ni/Au AlGaN/GaN HEMT increased. However, with temperatures exceeding 308 K under the same off-state stress conditions, the reverse leakage current of the Pt/Ti/Pt/Au AlGaN/GaN HEMT increases, which can be intensified using the inverse piezoelectric effect. Based on this phenomenon, the present work reveals the necessity for analyzing the concurrent SBH and reliability instability due to the interfacial trap states of the MS contacts.

Author(s):  
Yu-Chen Lai ◽  
Yi-Nan Zhong ◽  
Ming-Yan Tsai ◽  
Yue-Ming Hsin

AbstractThis study investigated the gate capacitance and off-state characteristics of 650-V enhancement-mode p-GaN gate AlGaN/GaN high-electron-mobility transistors after various degrees of gate stress bias. A significant change was observed in the on-state capacitance when the gate stress bias was greater than 6 V. The corresponding threshold voltage exhibited a positive shift at low gate stress and a negative shift when the gate stress was greater than 6 V, which agreed with the shift observation from the I–V measurement. Moreover, the off-state leakage current increased significantly after the gate stress exceeded 6 V during the off-state characterization although the devices could be biased up to 1000 V without breakdown. The increase in the off-state leakage current would lead to higher power loss.


2018 ◽  
Vol 58 (2) ◽  
Author(s):  
Vytautas Jakštas ◽  
Justinas Jorudas ◽  
Vytautas Janonis ◽  
Linas Minkevičius ◽  
Irmantas Kašalynas ◽  
...  

This paper reports on the AlGaN/GaN Schottky diodes (SDs) and high-electron-mobility transistors (HEMTs) grown on a semi-insulating SiC substrate. The electronic devices demonstrate an improved performance in comparison with the ones processed on a sapphire substrate. Both the SDs and HEMTs show much smaller leakage current density and a higher ION/IOFF ratio, reaching values down to 3.0±1.2 mA/cm2 and up to 70 dB under the reverse electric field of 340 kV/cm, respectively. The higher thermal conductivity of the SiC substrate leads to the increase of steady current and transconductance, and better thermal management of the HEMT devices. In addition, a successful detection of terahertz (THz) waves with the AlGaN/GaN HEMT is demonstrated at room temperature. These results open further routes for the optimization of THz designs which may result in development of novel plasmonic THz devices.


2014 ◽  
Vol 104 (15) ◽  
pp. 153509 ◽  
Author(s):  
YongHe Chen ◽  
Kai Zhang ◽  
MengYi Cao ◽  
ShengLei Zhao ◽  
JinCheng Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document