scholarly journals Minimized Triple-Band Eight-Element Antenna Array for 5G Metal-frame Smartphone Applications

Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 136
Author(s):  
Jianlin Huang ◽  
Zhuoni Chen ◽  
Qibo Cai ◽  
Tian Hong Loh ◽  
Gui Liu

A multiple-input-multiple-output (MIMO) antenna array for triple-band 5G metal-frame smartphone applications is proposed in this paper. Each single antenna element consists of an S-shaped feeding strip and an L-shaped radiation strip on the metal frame. The dimension of the antenna element is only 6.5 mm × 7 mm (0.076 λ0 × 0.082 λ0, λ0 is the free-space wavelength at the frequency of 3.5 GHz). The −6 dB impedance bandwidth of the proposed eight-antenna array can cover 3.3–3.8 GHz, 4.8–5 GHz, and 5.15–5.925 GHz. The evolution design and the analysis of the optimal parameters for a single antenna element are derived to investigate the principle of the antenna. The measured total efficiency is larger than 70%. The measured isolation is better than 13 dB. The measurements of the prototype agree well with the simulation results.

Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 542 ◽  
Author(s):  
Jianlin Huang ◽  
Guiting Dong ◽  
Jing Cai ◽  
Han Li ◽  
Gui Liu

A quad-port antenna array operating in 3.5 GHz band (3.4–3.6 GHz) and 5 GHz band (4.8–5 GHz) for fifth-generation (5G) smartphone applications is presented in this paper. The single antenna element consists of an L-shaped strip, a parasitic rectangle strip, and a modified Z-shaped strip. To reserve space for 2G/3G/4G antennas, the quad-port antenna array is printed along the two long frames of the smartphone. The evolution design and the analysis of the optimal parameters of a single antenna element are derived to investigate the principle of the antenna. The prototype of the presented antenna is tested and the measured results agree well with the simulation. The measured total efficiency is better than 70% and the isolation is larger than 16.5 dB.


Micromachines ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 489
Author(s):  
Jianlin Huang ◽  
Guiting Dong ◽  
Qibo Cai ◽  
Zhizhou Chen ◽  
Limin Li ◽  
...  

This paper presents a dual-band four-element multiple-input-multiple-output (MIMO) array for the fifth generation (5G) mobile communication. The proposed antenna is composed of an open-loop ring resonator feeding element and a T-shaped radiating element. The utilization of the open-loop ring resonator not only reduces the size of the antenna element, but also provides positive cross-coupling. The dimension of a single antenna element is 14.9 mm × 7 mm (0.27λ × 0.13λ, where λ is the wavelength of 5.5 GHz). The MIMO antenna exhibits a dual-band feature from 3.3 to 3.84 GHz and 4.61 to 5.91 GHz, which can cover 5G New Radio N78 (3.3–3.8 GHz), 5G China Band N79 (4.8–5 GHz), and IEEE 802.11 ac (5.15–5.35 GHz, 5.725–5.85 GHz). The measured total efficiency and isolation are better than 70% and 15 dB, respectively. The calculated envelope correlation coefficient (ECC) is less than 0.02. The measured results are in good agreement with the simulated results.


Electronics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 778
Author(s):  
Iftikhar Ahmad ◽  
Houjun Sun ◽  
Umair Rafique ◽  
Zhang Yi

This paper presents a design of a triangular slot-loaded planar rectangular antenna array for wideband millimeter-wave (mm-wave) 5G communication systems. The proposed array realizes an overall size of 35.5 × 14.85 mm2. To excite the array elements, a four-way broadband corporate feeding network was designed and analyzed. The proposed array offered a measured impedance bandwidth in two different frequency ranges, i.e., from 23 to 24.6 GHz and from 26 to 45 GHz. The single-antenna element of the array consists of a rectangular patch radiator with a triangular slot. The partial ground plane was used at the bottom side of the substrate to obtain a wide impedance bandwidth. The peak gain in the proposed array is ≈12 dBi with a radiation efficiency of >90%. Furthermore, the array gives a half-power beamwidth (HPBW) of as low as 12.5°. The proposed array has been fabricated and measured, and it has been observed that the measured results are in agreement with the simulated data.


Author(s):  
Le Minh Thuy

In this paper, a novel antenna array at 5GHz is presented with a low sidelobe level and wide impedance bandwidth for indoor positioning applications . The antenna array has the size of 450 ×57×0.8 mm3 with the high gain of 14.5dBi and the low SLL of -18 dB at 5GHz. The series feed using Unequal Split T-Junction is proposed with the Chebyshev-amplitude distribution to improve SLL. Besides the 1800 phase and amplitude distribution, by deploying driven elements above each single antenna element, the radiation pattern and the gain of the antenna aray are significantly improved.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 624 ◽  
Author(s):  
Pawan Kumar ◽  
Shabana Urooj ◽  
Fadwa Alrowais

A compact, low-profile, coplanar waveguide (CPW)-fed quad-port multiple-input–multiple-output (MIMO)/diversity antenna with triple band-notched (Wi-MAX, WLAN, and X-band) characteristics is proposed for super-wideband (SWB) applications. The proposed design contains four similar truncated–semi-elliptical–self-complementary (TSESC) radiating patches, which are excited through tapered CPW feed lines. A complementary slot matching the radiating patch is introduced in the ground plane of the truncated semi-elliptical antenna element to obtain SWB. The designed MIMO/diversity antenna displays a bandwidth ratio of 31:1 and impedance bandwidth (|S11| ≤ − 10 dB) of 1.3–40 GHz. In addition, a complementary split-ring resonator (CSRR) is implanted in the resonating patch to eliminate WLAN (5.5 GHz) and X-band (8.5 GHz) signals from SWB. Further, an L-shaped slit is used to remove Wi-MAX (3.5 GHz) band interferences. The MIMO antenna prototype is fabricated, and a good agreement is achieved between the simulated and experimental outcomes.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Nadeem Ashraf ◽  
Hamsakutty Vettikalladi ◽  
Majeed A. S. Alkanhal

The concept of substrate integrated waveguide (SIW) technology along with dielectric resonators (DR) is used to design antenna/array for 60 GHz communication systems. SIW is created in the substrate of RT/duroid 5880 having relative permittivityεr=2.23and loss tangenttan⁡δ=0.003. H-shaped longitudinal slot is engraved at the top metal layer of the substrate. Two pieces of the DR are placed on the slot without any air gap. The antenna structures are modeled using CST Microwave Studio and then the results are verified using another simulation software HFSS. Simulation results of the two designs are presented; first a single antenna element and then to enhance the gain of the system a broadside array of1×4is presented in the second design. For the single antenna element, the impedance bandwidth is 10.33% having a gain up to 5.5 dBi. Whereas in an array of1×4elements, the impedance bandwidth is found to be 10.70% with a gain up to 11.20 dBi. For the single antenna element and1×4antenna array, the simulated radiation efficiency is found to be 81% and 78%, respectively.


Author(s):  
Hussain Al-Rizzo ◽  
Ayman A. Isaac ◽  
Sulaiman Z. Tariq ◽  
Samer Yahya

This chapter introduces a novel design concept to reduce mutual coupling among closely-spaced antenna elements of a MIMO array. This design concept significantly reduces the complexity of traditional/existing design approaches such as metamaterials, defected ground plane structures, soft electromagnetic surfaces, parasitic elements, matching and decoupling networks using a simple, yet a novel design alternative. The approach is based on a planar single decoupling element, consisting of a rectangular metallic ring resonator printed on one face of an ungrounded substrate. The decoupling structure surrounds a two-element vertical monopole antenna array fed by a coplanar waveguide structure. The design is shown both by simulations and measurements to reduce the mutual coupling by at least 20 dB, maintain the impedance bandwidth over which S11, is less than −10 dB, and reduce the envelope correlation coefficient to below 0.001. The boresight of the far-field radiation patterns of the two vertical monopole wire antennas operating at 2.4 GHz and separated by 8 mm (λo/16), where λo is the free-space wavelength at 2.45 GHz, is shown to be orthogonal and inclined by 45° with respect to the horizontal (azimuthal) plane while maintaining the shape of the isolated single antenna element.


2021 ◽  
Vol 11 (5) ◽  
pp. 2382
Author(s):  
Rongguo Song ◽  
Xiaoxiao Chen ◽  
Shaoqiu Jiang ◽  
Zelong Hu ◽  
Tianye Liu ◽  
...  

With the development of 5G, Internet of Things, and smart home technologies, miniaturized and compact multi-antenna systems and multiple-input multiple-output (MIMO) antenna arrays have attracted increasing attention. Reducing the coupling between antenna elements is essential to improving the performance of such MIMO antenna system. In this work, we proposed a graphene-assembled, as an alternative material rather than metal, film-based MIMO antenna array with high isolation for 5G application. The isolation of the antenna element is improved by a graphene assembly film (GAF) frequency selective surface and isolation strip. It is shown that the GAF antenna element operated at 3.5 GHz has the realized gain of 2.87 dBi. The addition of the decoupling structure improves the isolation of the MIMO antenna array to more than 10 dB and corrects the antenna radiation pattern and operating frequency. The isolation between antenna elements with an interval of 0.4λ is above 25 dB. All experimental results show that the GAF antenna and decoupling structure are efficient devices for 5G mobile communication.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Zengrui Li ◽  
Xiaole Kang ◽  
Jianxun Su ◽  
Qingxin Guo ◽  
Yaoqing (Lamar) Yang ◽  
...  

The characteristics of a novel antipodal Vivaldi antenna array mounted on a dielectric cone are presented. By employing antipodal Vivaldi antenna element, the antenna array shows ultrawide bandwidth and end-fire radiation characteristics. Our simulations show that the cone curvature has an obvious influence on the performance of the conformal antenna, in terms of both the bandwidth and the radiation patterns. The thickness and permittivity of the dielectric cone have an effect on the bandwidth of the conformal antenna. Measurement results of both single antenna and conformal antenna array show a good agreement with the simulated results. The measured conformal antenna can achieve a −10 dBS11with bandwidth of 2.2–12 GHz and demonstrate a typical end-fire radiation beam. These findings provide useful guidelines and insights for the design of wideband end-fire antennas mounted on a dielectric cone.


Sign in / Sign up

Export Citation Format

Share Document