scholarly journals Effects of Magnetic Minerals Exposure and Microbial Responses in Surface Sediment across the Bohai Sea

2021 ◽  
Vol 10 (1) ◽  
pp. 6
Author(s):  
Lei Chen ◽  
Mingpeng Wang ◽  
Yuntao Li ◽  
Weitao Shang ◽  
Jianhui Tang ◽  
...  

Extensive production and application of magnetic minerals introduces significant amounts of magnetic wastes into the environment. Exposure to magnetic minerals could affect microbial community composition and geographic distribution. Here, we report that magnetic susceptibility is involved in determining bacterial α-diversity and community composition in surface sediment across the Bohai Sea by high-throughput sequencing analysis of the 16S rRNA gene. The results showed that environmental factors (explained 9.80%) played a larger role than spatial variables (explained 6.72%) in conditioning the bacterial community composition. Exposure to a magnetite center may shape the geographical distribution of five dissimilatory iron reducing bacteria. The microbial iron reduction ability and electroactive activity in sediment close to a magnetite center are stronger than those far away. Our study provides a novel understanding for the response of DIRB and electroactive bacteria to magnetic minerals exposure.

2021 ◽  
Author(s):  
Lei Chen ◽  
Mingpeng Wang ◽  
Yuntao Li ◽  
Weitao Shang ◽  
Jianhui Tang ◽  
...  

Abstract Extensive production and application of magnetic minerals produce significant amounts of magnetic wastes to the environment. These magnetic minerals exposure could affect microbial community composition and geographic distribution. Here, we reported magnetic susceptibility is involved in determining bacterial α-diversity and community composition in surface sediment across Bohai Sea. Environmental factors (explained 9.80%) played a larger role than spatial variables (explained 6.72%) in conditioning the bacterial community composition. Exposure of magnetite center may shape geographical distribution of five dissimilatory iron reducing bacteria (DIRB). Microbial iron reduction ability and electroactive activity in sediment close to magnetite center are stronger than those far away. Our study provides novel understanding for response of DIRB and electroactive bacteria to magnetic minerals exposure.


2020 ◽  
Author(s):  
lei chen ◽  
Yuntao Li ◽  
Mingpeng Wang ◽  
Weitao Shang ◽  
Jianhui Tang ◽  
...  

Abstract Background: Microbial spatial distribution has been widely investigated in sediment. However, there is poorly available information on microbial distribution patterns in sediment of Bohai Sea coastal zone. Results: Here, we investigated the bacterial community composition and diversity in riverine and marine surface sediment around and in the Bohai Sea using high-throughput sequencing. Bacterial communities mainly comprised Proteobacteria, Bacteroidetes, and Firmicutes. Salinity, dissolved oxygen, pH, and magnetic susceptibility played the main role in determining bacterial α-diversity and community composition in this region. Of the total bacterial community composition variation, environmental factors (explained 29.41% of the total microbial community composition variation) played a more important role than spatial variables (explained 3.03%) in conditioning the bacterial community composition. Meanwhile, the significantly pure spatial effect and distance-decay tendency suggested that dispersal limitation was also an influential factor in shaping the bacterial biogeographical pattern. The presence of magnetite center might shape the geographical distribution of five genera Lactococcus, Clostridium, Caulobacter, Gillisia and Sphingomonas probably by affecting their iron-related geochemical cycle.Conclusion: Our results may provide a better understanding of present-day bacterial biogeography and the correlation between microbial communities and key environmental variables in a typical coastal area. Depending on these information, coastal resources could be efficiently predicted, assessed and used.


2019 ◽  
Author(s):  
Edwin Sien Aun Sia ◽  
Zhuoyi Zhu ◽  
Jing Zhang ◽  
Wee Cheah ◽  
Jiang Shan ◽  
...  

Abstract. Microbial community composition and diversity in freshwater habitats, especially in lotic environments, are much less studied compared to marine and soil communities. The Rajang River is the main drainage system for central Sarawak in Malaysian Borneo and passes through peat domes whereby peat-rich material is being fed into the system and eventually into the southern South China Sea. Microbial communities found within peat-rich systems are important biogeochemical cyclers in terms of methane and carbon dioxide sequestration. To address the critical lack of knowledge about microbial communities in tropical (peat-draining) rivers, this study represents the first seasonal assessment targeted at establishing a foundational understanding of the microbial communities of the Rajang River-South China Sea continuum. This was carried out utilizing 16S rRNA gene amplicon sequencing via Illumina MiSeq in size-fractionated samples (0.2 and 3.0 μm GF/C filter membranes) covering different biogeographical features/sources from headwaters to coastal waters. The microbial communities found along the Rajang river exhibited taxa common to rivers (i.e. the predominance of β-Proteobacteria) while estuarine and marine regions exhibited taxa that were common to the aforementioned regions as well (i.e. predominance of α- and γ-Proteobacteria). This is in agreement with studies from other rivers which observed similar changes along the salinity gradients. In terms of particulate versus free-living bacteria, nonmetric multi-dimensional scaling (NMDS) results showed similarly distributed microbial communities with varying separation between seasons. Distinct patterns were observed based on linear models as a result of the changes in salinity along with variation of other biogeochemical parameters. Alpha diversity indices indicated that microbial communities were higher in diversity upstream compared to the marine and estuarine regions whereas anthropogenic perturbations led to increased richness but less diversity. Despite the observed changes in bacterial community composition and diversity that occur along the Rajang River to sea continuum, the PICRUST predictions showed minor variations. The results provide essential context for future studies such as further analyses on the ecosystem health in response to anthropogenic land-use practices and probable development of biomarkers to improve the monitoring of water quality in this region.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3362 ◽  
Author(s):  
Kayla M. Williamson ◽  
Brandie D. Wagner ◽  
Charles E. Robertson ◽  
Emily J. Johnson ◽  
Edith T. Zemanick ◽  
...  

BackgroundPrevious studies have demonstrated the importance of DNA extraction methods for molecular detection ofStaphylococcus,an important bacterial group in cystic fibrosis (CF). We sought to evaluate the effect of enzymatic digestion (EnzD) prior to DNA extraction on bacterial communities identified in sputum and oropharyngeal swab (OP) samples from patients with CF.MethodsDNA from 81 samples (39 sputum and 42 OP) collected from 63 patients with CF was extracted in duplicate with and without EnzD. Bacterial communities were determined by rRNA gene sequencing, and measures of alpha and beta diversity were calculated. Principal Coordinate Analysis (PCoA) was used to assess differences at the community level and Wilcoxon Signed Rank tests were used to compare relative abundance (RA) of individual genera for paired samples with and without EnzD.ResultsShannon Diversity Index (alpha-diversity) decreased in sputum and OP samples with the use of EnzD. Larger shifts in community composition were observed for OP samples (beta-diversity, measured by Morisita-Horn), whereas less change in communities was observed for sputum samples. The use of EnzD with OP swabs resulted in significant increase in RA for the generaGemella(p < 0.01),Streptococcus(p < 0.01), andRothia(p < 0.01).Staphylococcus(p < 0.01) was the only genus with a significant increase in RA from sputum, whereas the following genera decreased in RA with EnzD:Veillonella(p < 0.01),Granulicatella(p < 0.01),Prevotella(p < 0.01), andGemella(p = 0.02). In OP samples, higher RA of Gram-positive taxa was associated with larger changes in microbial community composition.DiscussionWe show that the application of EnzD to CF airway samples, particularly OP swabs, results in differences in microbial communities detected by sequencing. Use of EnzD can result in large changes in bacterial community composition, and is particularly useful for detection ofStaphylococcusin CF OP samples. The enhanced identification ofStaphylococcus aureusis a strong indication to utilize EnzD in studies that use OP swabs to monitor CF airway communities.


Animals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 39
Author(s):  
Binghua Sun ◽  
Xiaojuan Xu ◽  
Yingna Xia ◽  
Yumei Cheng ◽  
Shuxin Mao ◽  
...  

The gut microbiome is expected to adapt to the varying energetic and nutritional pressures in females of different reproductive states. Changes in the gut microbiome may lead to varying nutrient utilizing efficiency in pregnant and lactating female primates. In this study, we examined variation in the gut bacterial community composition of wild female Tibetan macaques (Macaca thibetana) across different reproductive states (cycling, pregnancy and lactation). Fecal samples (n = 25) were collected from ten adult females harvested across different reproductive states. Gut microbial community composition and potential functions were assessed using 16 S rRNA gene sequences. We found significant changes in gut bacterial taxonomic composition, structure and their potential functions in different reproductive states of our study species. In particular, the relative abundance of Proteobacteria increased significantly during pregnancy and lactation. In addition, the relative abundance of Succinivibrionaceae and Succinivibrio (Succinivibrionaceae) were overrepresented in pregnant females, whereas Bifidobacteriaceae and Bifidobacterium (Bifidobacteriaceae) were overrepresented in lactating females. Furthermore, the relative abundance of predicted functional genes of several metabolic pathways related to host’s energy and nutrition, such as metabolism of carbohydrates, cofactors and vitamins, glycans and other amino acids, were enriched in pregnancy and lactation. Our findings suggest that changes in the gut microbiome may play an important role in meeting the energetic needs of pregnant and lactating Tibetan macaques. Future studies of the “microbial reproductive ecology” of primates that incorporate food availability, reproductive seasonality, female reproductive physiology and gut inflammation are warranted.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6768
Author(s):  
Matheus A.P. Cipriano ◽  
Afnan K.A. Suleiman ◽  
Adriana P.D. da Silveira ◽  
Janaína B. do Carmo ◽  
Eiko E. Kuramae

The use of residue of sugarcane ethanol industry named vinasse in fertirrigation is an established and widespread practice in Brazil. Both non-concentrated vinasse (NCV) and concentrated vinasse (CV) are used in fertirrigation, particularly to replace the potassium fertilizer. Although studies on the chemical and organic composition of vinasse and their impact on nitrous oxide emissions when applied in soil have been carried out, no studies have evaluated the microbial community composition and diversity in different forms of vinasse. We assessed the bacterial community composition of NCV and CV by non-culturable and culturable approaches. The non-culturable bacterial community was assessed by next generation sequencing of the 16S rRNA gene and culturable community by isolation of bacterial strains and molecular and biochemical characterization. Additionally, we assessed in the bacterial strains the presence of genes of nitrogen cycle nitrification and denitrification pathways. The microbial community based on16S rRNAsequences of NCV was overrepresented by Bacilli and Negativicutes while CV was mainly represented by Bacilli class. The isolated strains from the two types of vinasse belong to class Bacilli, similar toLysinibacillus, encode fornirKgene related to denitrification pathway. This study highlights the bacterial microbial composition particularly in CV what residue is currently recycled and recommended as a sustainable practice in sugarcane cultivation in the tropics.


2010 ◽  
Vol 77 (1) ◽  
pp. 302-311 ◽  
Author(s):  
Tatiana A. Vishnivetskaya ◽  
Jennifer J. Mosher ◽  
Anthony V. Palumbo ◽  
Zamin K. Yang ◽  
Mircea Podar ◽  
...  

ABSTRACTHigh concentrations of uranium, inorganic mercury [Hg(II)], and methylmercury (MeHg) have been detected in streams located in the Department of Energy reservation in Oak Ridge, TN. To determine the potential effects of the surface water contamination on the microbial community composition, surface stream sediments were collected 7 times during the year, from 5 contaminated locations and 1 control stream. Fifty-nine samples were analyzed for bacterial community composition and geochemistry. Community characterization was based on GS 454 FLX pyrosequencing with 235 Mb of 16S rRNA gene sequence targeting the V4 region. Sorting and filtering of the raw reads resulted in 588,699 high-quality sequences with lengths of >200 bp. The bacterial community consisted of 23 phyla, includingProteobacteria(ranging from 22.9 to 58.5% per sample),Cyanobacteria(0.2 to 32.0%),Acidobacteria(1.6 to 30.6%),Verrucomicrobia(3.4 to 31.0%), and unclassified bacteria. Redundancy analysis indicated no significant differences in the bacterial community structure between midchannel and near-bank samples. Significant correlations were found between the bacterial community and seasonal as well as geochemical factors. Furthermore, several community members within theProteobacteriagroup that includes sulfate-reducing bacteria and within theVerrucomicrobiagroup appeared to be associated positively with Hg and MeHg. This study is the first to indicate an influence of MeHg on thein situmicrobial community and suggests possible roles of these bacteria in the Hg/MeHg cycle.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Raiza Hasrat ◽  
Jolanda Kool ◽  
Wouter A. A. de Steenhuijsen Piters ◽  
Mei Ling J. N. Chu ◽  
Sjoerd Kuiling ◽  
...  

AbstractThe low biomass of respiratory samples makes it difficult to accurately characterise the microbial community composition. PCR conditions and contaminating microbial DNA can alter the biological profile. The objective of this study was to benchmark the currently available laboratory protocols to accurately analyse the microbial community of low biomass samples. To study the effect of PCR conditions on the microbial community profile, we amplified the 16S rRNA gene of respiratory samples using various bacterial loads and different number of PCR cycles. Libraries were purified by gel electrophoresis or AMPure XP and sequenced by V2 or V3 MiSeq reagent kits by Illumina sequencing. The positive control was diluted in different solvents. PCR conditions had no significant influence on the microbial community profile of low biomass samples. Purification methods and MiSeq reagent kits provided nearly similar microbiota profiles (paired Bray–Curtis dissimilarity median: 0.03 and 0.05, respectively). While profiles of positive controls were significantly influenced by the type of dilution solvent, the theoretical profile of the Zymo mock was most accurately analysed when the Zymo mock was diluted in elution buffer (difference compared to the theoretical Zymo mock: 21.6% for elution buffer, 29.2% for Milli-Q, and 79.6% for DNA/RNA shield). Microbiota profiles of DNA blanks formed a distinct cluster compared to low biomass samples, demonstrating that low biomass samples can accurately be distinguished from DNA blanks. In summary, to accurately characterise the microbial community composition we recommend 1. amplification of the obtained microbial DNA with 30 PCR cycles, 2. purifying amplicon pools by two consecutive AMPure XP steps and 3. sequence the pooled amplicons by V3 MiSeq reagent kit. The benchmarked standardized laboratory workflow presented here ensures comparability of results within and between low biomass microbiome studies.


Author(s):  
Tamara J. H. M. van Bergen ◽  
Ana B. Rios-Miguel ◽  
Tom M. Nolte ◽  
Ad M. J. Ragas ◽  
Rosalie van Zelm ◽  
...  

Abstract Pharmaceuticals find their way to the aquatic environment via wastewater treatment plants (WWTPs). Biotransformation plays an important role in mitigating environmental risks; however, a mechanistic understanding of involved processes is limited. The aim of this study was to evaluate potential relationships between first-order biotransformation rate constants (kb) of nine pharmaceuticals and initial concentration of the selected compounds, and sampling season of the used activated sludge inocula. Four-day bottle experiments were performed with activated sludge from WWTP Groesbeek (The Netherlands) of two different seasons, summer and winter, spiked with two environmentally relevant concentrations (3 and 30 nM) of pharmaceuticals. Concentrations of the compounds were measured by LC–MS/MS, microbial community composition was assessed by 16S rRNA gene amplicon sequencing, and kb values were calculated. The biodegradable pharmaceuticals were acetaminophen, metformin, metoprolol, terbutaline, and phenazone (ranked from high to low biotransformation rates). Carbamazepine, diatrizoic acid, diclofenac, and fluoxetine were not converted. Summer and winter inocula did not show significant differences in microbial community composition, but resulted in a slightly different kb for some pharmaceuticals. Likely microbial activity was responsible instead of community composition. In the same inoculum, different kb values were measured, depending on initial concentration. In general, biodegradable compounds had a higher kb when the initial concentration was higher. This demonstrates that Michealis-Menten kinetic theory has shortcomings for some pharmaceuticals at low, environmentally relevant concentrations and that the pharmaceutical concentration should be taken into account when measuring the kb in order to reliably predict the fate of pharmaceuticals in the WWTP. Key points • Biotransformation and sorption of pharmaceuticals were assessed in activated sludge. • Higher initial concentrations resulted in higher biotransformation rate constants for biodegradable pharmaceuticals. • Summer and winter inocula produced slightly different biotransformation rate constants although microbial community composition did not significantly change. Graphical abstract


2021 ◽  
Vol 12 ◽  
Author(s):  
Matteo Daghio ◽  
Francesca Ciucci ◽  
Arianna Buccioni ◽  
Alice Cappucci ◽  
Laura Casarosa ◽  
...  

The use of rustic cattle is desirable to face challenges brought on by climate change. Maremmana (MA) and Aubrac (AU) are rustic cattle breeds that can be successfully used for sustainable production. In this study, correlations between two rearing systems (feedlot and grazing) and the rumen microbiota, the lipid composition of rumen liquor (RL), and the growth performance of MA and AU steers were investigated. Bacterial community composition was characterized by high-throughput sequencing of 16S rRNA gene amplicons, and the RL lipid composition was determined by measuring fatty acid (FA) and the dimethyl acetal profiles. The main factor influencing bacterial community composition was the cattle breed. Some bacterial groups were positively correlated to average daily weight gain for the two breeds (i.e., Rikenellaceae RC9 gut group, Fibrobacter and Succiniclasticum in the rumen of MA steers, and Succinivibrionaceae UCG-002 in the rumen of AU steers); despite this, animal performance appeared to be influenced by short chain FAs production pathways and by the presence of H2 sinks that divert the H2 to processes alternative to the methanogenesis.


Sign in / Sign up

Export Citation Format

Share Document