scholarly journals Teamwork to Survive in Hostile Soils: Use of Plant Growth-Promoting Bacteria to Ameliorate Soil Salinity Stress in Crops

2022 ◽  
Vol 10 (1) ◽  
pp. 150
Author(s):  
Rafael Jiménez-Mejía ◽  
Ricardo I. Medina-Estrada ◽  
Santos Carballar-Hernández ◽  
Ma. del Carmen Orozco-Mosqueda ◽  
Gustavo Santoyo ◽  
...  

Plants and their microbiomes, including plant growth-promoting bacteria (PGPB), can work as a team to reduce the adverse effects of different types of stress, including drought, heat, cold, and heavy metals stresses, as well as salinity in soils. These abiotic stresses are reviewed here, with an emphasis on salinity and its negative consequences on crops, due to their wide presence in cultivable soils around the world. Likewise, the factors that stimulate the salinity of soils and their impact on microbial diversity and plant physiology were also analyzed. In addition, the saline soils that exist in Mexico were analyzed as a case study. We also made some proposals for a more extensive use of bacterial bioinoculants in agriculture, particularly in developing countries. Finally, PGPB are highly relevant and extremely helpful in counteracting the toxic effects of soil salinity and improving crop growth and production; therefore, their use should be intensively promoted.

Author(s):  
Khushboo Chaudhary ◽  
Suphiya Khan ◽  
Pankaj Kumar Saraswat

The heavy metal pollution problem is all over the world. Plant-growth-promoting bacteria (PGPB) has transformed heavy metals present in the soil, which removes and minimizes their toxic effects. This chapter highlights the role of plant-growth-promoting bacteria, chelating agents, and nanoparticles for remediation of heavy metals; their mechanism of action; and their applications approach of hyperaccumulation. Therefore, this chapter focuses on the mechanisms by which microorganisms, chelating agents, and nanoparticles can mobilize or immobilize metals in soils and the nano-phytoremediation strategies are addressed for the improvement of phytoextraction as an innovative process for enhancement of heavy metals removal from soil.


2021 ◽  
Vol 5 ◽  
Author(s):  
Gustavo Santoyo ◽  
Elisa Gamalero ◽  
Bernard R. Glick

Soil microbiota plays an important role in the sustainable production of the different types of agrosystems. Among the members of the plant microbiota, mycorrhizal fungi (MF) and plant growth-promoting bacteria (PGPB) interact in rhizospheric environments leading to additive and/or synergistic effects on plant growth and heath. In this manuscript, the main mechanisms used by MF and PGPB to facilitate plant growth are reviewed, including the improvement of nutrient uptake, and the reduction of ethylene levels or biocontrol of potential pathogens, under both normal and stressful conditions due to abiotic or biotic factors. Finally, it is necessary to expand both research and field use of bioinoculants based on these components and take advantage of their beneficial interactions with plants to alleviate plant stress and improve plant growth and production to satisfy the demand for food for an ever-increasing human population.


2020 ◽  
Vol 10 (20) ◽  
pp. 7326
Author(s):  
Stefan Shilev

Soil deterioration has led to problems with the nutrition of the world’s population. As one of the most serious stressors, soil salinization has a negative effect on the quantity and quality of agricultural production, drawing attention to the need for environmentally friendly technologies to overcome the adverse effects. The use of plant-growth-promoting bacteria (PGPB) can be a key factor in reducing salinity stress in plants as they are already introduced in practice. Plants having halotolerant PGPB in their root surroundings improve in diverse morphological, physiological, and biochemical aspects due to their multiple plant-growth-promoting traits. These beneficial effects are related to the excretion of bacterial phytohormones and modulation of their expression, improvement of the availability of soil nutrients, and the release of organic compounds that modify plant rhizosphere and function as signaling molecules, thus contributing to the plant’s salinity tolerance. This review aims to elucidate mechanisms by which PGPB are able to increase plant tolerance under soil salinity.


The heavy metal pollution problem is all over the world. Plant-growth-promoting bacteria (PGPB) has transformed heavy metals present in the soil, which removes and minimizes their toxic effects. This chapter highlights the role of plant-growth-promoting bacteria, chelating agents, and nanoparticles for remediation of heavy metals; their mechanism of action; and their applications approach of hyperaccumulation. Therefore, this chapter focuses on the mechanisms by which microorganisms, chelating agents, and nanoparticles can mobilize or immobilize metals in soils and the nano-phytoremediation strategies are addressed for the improvement of phytoextraction as an innovative process for enhancement of heavy metals removal from soil.


2018 ◽  
Vol 5 (1) ◽  
pp. 24-28 ◽  
Author(s):  
B Patni ◽  
A S Panwar ◽  
P Negi ◽  
Gopal Krishna Joshi

Plant growth promoting bacteria (PGPB) are well known to promote plant growth in a number of ways. It is important to study plant growth promoting potential of bacteria capable of growing in extreme environments to establish their role in promoting agricultural yield under harsh conditions. Psychrophilic or psychrotolerant bacteria with plant growth promoting traits may improve the quality of agricultural practices in hilly terrain. The agricultural importance of such microbes stems from the fact that the world over temperate agro-ecosystems are characterized by low temperatures and short growing seasons that subject both plant and microbial life to cold temperature induced stress. Hence, there is a need to identify potential microbes that retain their functional traits under low temperature conditions. Such microbes can be used to enhance the agricultural yields in low temperature areas of the world. This review describes plant growth promoting activities identified in cold adapted bacteria.


2014 ◽  
Vol 16 (11) ◽  
pp. 1133-1147 ◽  
Author(s):  
Pearl Chang ◽  
Karen E. Gerhardt ◽  
Xiao-Dong Huang ◽  
Xiao-Ming Yu ◽  
Bernard R. Glick ◽  
...  

2016 ◽  
Vol 10 (31) ◽  
pp. 1203-1214 ◽  
Author(s):  
Gon ccedil alves da Silva Flaviana ◽  
Batista dos Santos Isaneli ◽  
Jose de Sousa Adjailton ◽  
Raquel Barbosa Farias Andreza ◽  
Patricia da Silva Diniz Williane ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document