scholarly journals Functional Traits in Lichen Ecology: A Review of Challenge and Opportunity

2021 ◽  
Vol 9 (4) ◽  
pp. 766
Author(s):  
Christopher J. Ellis ◽  
Johan Asplund ◽  
Renato Benesperi ◽  
Cristina Branquinho ◽  
Luca Di Nuzzo ◽  
...  

Community ecology has experienced a major transition, from a focus on patterns in taxonomic composition, to revealing the processes underlying community assembly through the analysis of species functional traits. The power of the functional trait approach is its generality, predictive capacity such as with respect to environmental change, and, through linkage of response and effect traits, the synthesis of community assembly with ecosystem function and services. Lichens are a potentially rich source of information about how traits govern community structure and function, thereby creating opportunity to better integrate lichens into ‘mainstream’ ecological studies, while lichen ecology and conservation can also benefit from using the trait approach as an investigative tool. This paper brings together a range of author perspectives to review the use of traits in lichenology, particularly with respect to European ecosystems from the Mediterranean to the Arctic-Alpine. It emphasizes the types of traits that lichenologists have used in their studies, both response and effect, the bundling of traits towards the evolution of life-history strategies, and the critical importance of scale (both spatial and temporal) in functional trait ecology.

2021 ◽  
Author(s):  
Katlyn Rose Betway ◽  
Robert D. Hollister ◽  
Jeremy May ◽  
Jacob A. Harris ◽  
William Gould ◽  
...  

The Arctic is warming more than twice the global average. Graminoids, deciduous shrubs, and evergreen shrubs have been shown to increase in cover in some regions, but not others. To better understand why plant response varies across regions, we compared change in cover over time with nine functional traits of twelve dominant species at three regions in northern Alaska (Utqiaġvik, Atqasuk, and Toolik Lake). Cover was measured three times from 2008 to 2018. Repeated measures ANOVA found one species showed a significant change in cover over time; Carex aquatilis increased at Atqasuk by 12.7%. Canonical correspondence analysis suggested a relationship between shifts in species cover and traits, but Pearson and Spearman correlations did not find a significant trend for any trait when analyzed individually. Investigation of community-weighted means (CWM) for each trait revealed no significant changes over time for any trait at any region. Whereas, estimated ecosystem values for several traits important to ecosystem functioning showed consistent increases over time at two regions (Utqiaġvik and Atqasuk). Results thus indicate that vascular plant community composition and function have remained consistent over time; however, documented increases in total plant cover have important implications for ecosystem functioning.


2015 ◽  
Author(s):  
Daijiang Li ◽  
Anthoy R Ives ◽  
Donald M Waller

Phylogeny-based and functional trait-based analyses are two principle ways to study community assembly and underlying ecological processes. In principle, knowing all information about species traits would make phylogenetic information redundant, at least that component of phylogenetic signal in the distribution of species among communities that is caused by phylogenetically related species sharing similar traits. In reality, phylogenies may contain more information than a set of singular, discretely measured traits because we cannot measure all species traits and may misjudge which are most important. The extent to which functional trait information makes phylogenetic information redundant, however, has not been explicitly studied with empirical data in community ecology. Here, we use phylogenetic linear mixed models to analyze community assembly of 55 understory plant species in 30 forest sites in central Wisconsin. These communities show strong phylogenetic attraction, yet variation among sites in 20 environmental variables could not account for this pattern. Most of the 15 functional traits we measured had strong phylogenetic signal, but only three varied strongly among sites in ways that affected species' abundances. These three traits explained only 19% of variation in phylogenetic patterns of species co-occurrence. Thus, phylogenies appear to provide considerably more information about community assembly than the functional traits measured in this study, demonstrating the value of phylogeny in studying of community assembly processes even with abundant functional traits.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Anne-Christine Monnet ◽  
Kévin Cilleros ◽  
Frédéric Médail ◽  
Marwan Cheikh Albassatneh ◽  
Juan Arroyo ◽  
...  

AbstractTrees play a key role in the structure and function of many ecosystems worldwide. In the Mediterranean Basin, forests cover approximately 22% of the total land area hosting a large number of endemics (46 species). Despite its particularities and vulnerability, the biodiversity of Mediterranean trees is not well known at the taxonomic, spatial, functional, and genetic levels required for conservation applications. The WOODIV database fills this gap by providing reliable occurrences, four functional traits (plant height, seed mass, wood density, and specific leaf area), and sequences from three DNA-regions (rbcL, matK, and trnH-psbA), together with modelled occurrences and a phylogeny for all 210 Euro-Mediterranean tree species. We compiled, homogenized, and verified occurrence data from sparse datasets and collated them on an INSPIRE-compliant 10 × 10 km grid. We also gathered functional trait and genetic data, filling existing gaps where possible. The WOODIV database can benefit macroecological studies in the fields of conservation, biogeography, and community ecology.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3189 ◽  
Author(s):  
S. Mažeika P. Sullivan ◽  
David W.P. Manning

Dam removal is an increasingly popular restoration tool, but our understanding of ecological responses to dam removal over time is still in the early stages. We quantified seasonal benthic macroinvertebrate density, taxonomic composition, and functional traits for three years after lowhead dam removal in three reaches of the Olentangy River (Ohio, USA): two upstream of former dam (one restored, one unrestored), and one downstream of former dam. Macroinvertebrate community density, generic richness, and Shannon–Wiener diversity decreased between ∼9 and ∼15 months after dam removal; all three variables consistently increased thereafter. These threshold responses were dependent on reach location: density and richness increased ∼15 months after removal in upstream reaches versus ∼19 months downstream of the former dam. Initial macroinvertebrate density declines were likely related to seasonality or life-history characteristics, but density increased up to 2.27× from year to year in three out of four seasons (late autumn, early spring, summer) across all reaches. Macroinvertebrate community composition was similar among the three reaches, but differed seasonally based on non-metric multidimensional scaling (NMDS) and analysis of similarity (ANOSIM). Seasonal differences among communities tended to decrease after dam removal. We detected community-wide shifts in functional traits such as multivoltinism, depositional habitat use, burrowing, and collector-gatherer feeding mode. We observed that these traits were expressed most strongly with Chironomidae, which was the most abundant family. Our results suggest that seasonal environmental conditions can play a role in the response and recovery of macroinvertebrate communities—often used to monitor ecosystem condition—following dam removal. In particular, macroinvertebrate density and diversity can show recovery after dam removal, especially in seasons when macroinvertebrate density is typically lowest, with concomitant changes to functional trait abundance. Thus, we recommend scientists and managers consider responses to dam removal throughout the year. Further, similar density, generic richness, and functional traits among reaches suggest that channel restoration after dam removal may initially have equivocal effects on invertebrate communities.


Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 485
Author(s):  
Anna Łubek ◽  
Martin Kukwa ◽  
Bogdan Jaroszewicz ◽  
Patryk Czortek

Current trends emphasize the importance of the examination of the functional composition of lichens, which may provide information on the species realized niche diversity and community assembly processes, thus enabling one to understand the specific adaptations of lichens and their interaction with the environment. We analyzed the distribution and specialization of diverse morphological, anatomical and chemical (lichen secondary metabolites) traits in lichen communities in a close-to-natural forest of lowland Europe. We considered these traits in relation to three levels of forest ecosystem organization: forest communities, phorophyte species and substrates, in order to recognize the specialization of functional traits to different levels of the forest complexity. Traits related to the sexual reproduction of mycobionts (i.e., ascomata types: lecanoroid apothecia, lecideoid apothecia, arthonioid apothecia, lirellate apothecia, stalked apothecia and perithecia) and asexual reproduction of mycobionts (pycnidia, hyphophores and sporodochia) demonstrated the highest specialization to type of substrate, tree species and forest community. Thallus type (foliose, fruticose, crustose and leprose thalli), ascospore dark pigmentation and asexual reproduction by lichenized diaspores (soredia and isidia) revealed the lowest specialization to tree species and substrate, as well as to forest community. Results indicate that lichen functional trait assemblage distribution should not only be considered at the level of differences in the internal structure of the analyzed forest communities (e.g., higher number of diverse substrates or tree species) but also studied in relation to specific habitat conditions (insolation, moisture, temperature, eutrophication) that are characteristic of a particular forest community. Our work contributes to the understanding of the role of the forest structure in shaping lichen functional trait composition, as well as enhancing our knowledge on community assembly rules of lichen species.


Author(s):  
Michael Kearney ◽  
Melodie McGeoch ◽  
Steven Chown

There is a growing focus on species’ traits in ecology, including initiatives to integrate trait data into biodiversity databases. This focus is motivated in part by a need to develop better predictive capacity for how species respond to environmental change. In this context, one is interested in functional traits – i.e. those with a defined link to environmental variability. This leads immediately to the questions of which traits to prioritise and how to characterise them. Here we argue that this can be achieved with greatest clarity by letting traits be defined by the equations of theoretical models that link individuals to their environments, i.e. mechanistic niche models. We illustrate this approach using the biophysical equations of heat and water exchange, and the metabolic equations of ontogentic growth. From this we derive a schema for a functional trait database that provides a high level of generality and consistency across taxa, and hooks into integrated predictive modelling frameworks. We argue that functional trait attribution at levels above the individual are unhelpful, but discuss how inferences can be made from individual-level functional trait data to populations and species.


2018 ◽  
Vol 39 (1) ◽  
pp. 53
Author(s):  
Jennifer L Wood ◽  
Ashley E Franks

Ecology is the study of the interactions amongst organisms and their environment1. In microbial ecology, a major goal is to understand how environmental microbiomes impact ecosystem health and function. This desire to mechanistically link micro and macro processes is increasingly highlighting the importance of functional ecology, which aims to develop an understanding of relationships using functional traits, as opposed to species names. A functional trait may be any morphological or physiological trait that influences the performance or fitness of an individual in a given environment, such as regeneration time, size, antibiotic production or motility2. Although it is not possible to measure a given trait for each individual within an environmental microbiome, community-level functional traits can be derived from the community metagenome either directly via shotgun sequencing or predictively (for bacteria) from 16S rRNA profiles3. In understanding environmental microbiomes, functional traits have unique properties that can be utilised to (1) compare microbiomes using an ecological framework, (2) understand processes governing community assembly, and (3) build predictive ecological models.


Forests ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 1159 ◽  
Author(s):  
Jinshi Xu ◽  
Han Dang ◽  
Mao Wang ◽  
Yongfu Chai ◽  
Yaoxin Guo ◽  
...  

Phylogenetic and functional diversities and their relationship are important for understanding community assembly, which relates to forest sustainability. Thus, both diversities have been used in ecological studies evaluating community responses to environmental changes. However, it is unclear whether these diversity measures can uncover the actual community assembly processes. Herein, we examined their utility to assess such assembly processes by analyzing similarities in phylogenetic, functional, and taxonomic α- and β-diversities along an elevational gradient. Additionally, we examined the relationships among environment, phylogeny, and functional traits within the community. Based on our results, we evaluated whether phylogenetic or functional diversity could better reveal the actual community assembly processes. We found that taxonomic, phylogenetic, and functional α-diversities were correlated with one another. Although the functional α-diversity showed a linear correlation with the elevational gradient, taxonomic and phylogenetic α-diversities showed unimodal patterns. Both phylogenetic and functional β-diversities correlated with taxonomic β-diversity, but there was no significant relationship between the former. Overall, our results evidenced that phylogenetic diversity and taxonomic diversity showed similar patterns, whereas functional diversity showed a relatively independent pattern, which may be due to limitations in the functional trait dimensions used in the present study. Although it is difficult to unravel whether the environment shapes phylogeny or functional traits within a community, phylogenetic diversity is a good proxy for assessing the assembly processes, whereas functional diversity may improve knowledge on the community by maximizing information about the functional trait dimensions.


2012 ◽  
Vol 279 (1748) ◽  
pp. 4811-4816 ◽  
Author(s):  
Masaki Hoso

Autotomy of body parts offers various prey animals immediate benefits of survival in compensation for considerable costs. I found that a land snail Satsuma caliginosa of populations coexisting with a snail-eating snake Pareas iwasakii survived the snake predation by autotomizing its foot, whereas those out of the snake range rarely survived. Regeneration of a lost foot completed in a few weeks but imposed a delay of shell growth. Imprints of autotomy were found in greater than 10 per cent of S. caliginosa in the snake range but in only less than 1 per cent out of it, simultaneously demonstrating intense predation by the snakes and high efficiency of autotomy for surviving snake predation in the wild. However, in experiments, mature S. caliginosa performed autotomy less frequently. Instead of the costly autotomy, they can use defensive denticles on the inside of their shell apertures. Owing to the constraints from the additive growth of shells, most pulmonate snails can produce these denticles only when they have fully grown up. Thus, this developmental constraint limits the availability of the modified aperture, resulting in ontogenetic switching of the alternative defences. This study illustrates how costs of adaptation operate in the evolution of life-history strategies under developmental constraints


Sign in / Sign up

Export Citation Format

Share Document