scholarly journals The Only Chemoreceptor Encoded by che Operon Affects the Chemotactic Response of Agrobacterium to Various Chemoeffectors

2021 ◽  
Vol 9 (9) ◽  
pp. 1923
Author(s):  
Jingyang Ye ◽  
Miaomiao Gao ◽  
Qingxuan Zhou ◽  
Hao Wang ◽  
Nan Xu ◽  
...  

Chemoreceptor (also called methyl-accepting chemotaxis protein, MCP) is the leading signal protein in the chemotaxis signaling pathway. MCP senses and binds chemoeffectors, specifically, and transmits the sensed signal to downstream proteins of the chemotaxis signaling system. The genome of Agrobacterium fabrum (previously, tumefaciens) C58 predicts that a total of 20 genes can encode MCP, but only the MCP-encoding gene atu0514 is located inside the che operon. Hence, the identification of the exact function of atu0514-encoding chemoreceptor (here, named as MCP514) will be very important for us to understand more deeply the chemotaxis signal transduction mechanism of A. fabrum. The deletion of atu0514 significantly decreased the chemotactic migration of A. fabrum in a swim plate. The test of atu0514-deletion mutant (Δ514) chemotaxis toward single chemicals showed that the deficiency of MCP514 significantly weakened the chemotactic response of A. fabrum to four various chemicals, sucrose, valine, citric acid and acetosyringone (AS), but did not completely abolish the chemotactic response. MCP514 was localized at cell poles although it lacks a transmembrane (TM) region and is predicted to be a cytoplasmic chemoreceptor. The replacement of residue Phe328 showed that the helical structure in the hairpin subdomain of MCP514 is a direct determinant for the cellular localization of MCP514. Single respective replacements of key residues indicated that residues Asn336 and Val353 play a key role in maintaining the chemotactic function of MCP514.

2021 ◽  
Vol 9 (6) ◽  
pp. 1134
Author(s):  
Dawei Gao ◽  
Renjie Zong ◽  
Zhiwei Huang ◽  
Jingyang Ye ◽  
Hao Wang ◽  
...  

The chemotactic response regulator CheY, when phosphorylated by the phosphoryl group from phosphorylated CheA, can bind to the motor switch complex to control the flagellar motor rotation. Agrobacterium fabrum (previous name: Agrobacterium tumefaciens), a phytopathogen, carries two paralogous cheY genes, cheY1 and cheY2. The functional difference of two paralogous CheYs remains unclear. Three cheY-deletion mutants were constructed to test the effects of two CheYs on the chemotaxis of A. fabrum. Phenotypes of three cheY-deletion mutants show that deletion of each cheY significantly affects the chemotactic response, but cheY2-deletion possesses more prominent effects on the chemotactic migration and swimming pattern of A. fabrum than does cheY1-deletion. CheA-dependent cellular localization of two CheY paralogs and in vitro pull-down of two CheY paralogs by FliM demonstrate that the distinct roles of two CheY paralogs arise mainly from the differentiation of their binding affinities for the motor switch component FliM, agreeing with the divergence of the key residues on the motor-binding surface involved in the interaction with FliM. The single respective replacements of key residues R93 and A109 on the motor-binding surface of CheY2 by alanine (A) and valine (V), the corresponding residues of CheY1, significantly enhanced the function of CheY2 in regulating the chemotactic response of A. fabrum CheY-deficient mutant Δy to nutrient substances and host attractants. These results conclude that the divergence of the key residues in the functional subdomain is the decisive factor of functional differentiation of these two CheY homologs and protein function may be improved by the substitution of the divergent key residues in the functional domain for the corresponding residues of its paralogs. This finding will help us to better understand how paralogous proteins sub-functionalize. In addition, the acquirement of two CheY2 variants, whose chemotactic response functions are significantly improved, will be very useful for us to further explore the mechanism of CheY to bind and regulate the flagellar motor and the role of chemotaxis in the pathogenicity of A. fabrum.


Marine Drugs ◽  
2019 ◽  
Vol 17 (8) ◽  
pp. 453 ◽  
Author(s):  
Guzmán ◽  
Wong ◽  
Román ◽  
Cárdenas ◽  
Alvárez ◽  
...  

The outburst of microbial resistance to antibiotics creates the need for new sources of active compounds for the treatment of pathogenic microorganisms. Marine microalgae are of particular interest in this context because they have developed tolerance and defense strategies to resist the exposure to pathogenic bacteria, viruses, and fungi in the aquatic environment. Although antimicrobial activities have been reported for some microalgae, natural algal bioactive peptides have not been described yet. In this work, acid extracts from the microalga Tetraselmis suecica with antibacterial activity were analyzed, and de novo sequences of peptides were determined. Synthetic peptides and their alanine and lysine analogs allowed identifying key residues and increasing their antibacterial activity. Additionally, it was determined that the localization of positive charges within the peptide sequence influences the secondary structure with tendency to form an alpha helical structure.


Cells ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 2344
Author(s):  
Lucia Iannotta ◽  
Alice Biosa ◽  
Jillian H. Kluss ◽  
Giulia Tombesi ◽  
Alice Kaganovich ◽  
...  

Mutations in LRRK2 cause familial Parkinson’s disease and common variants increase disease risk. LRRK2 kinase activity and cellular localization are tightly regulated by phosphorylation of key residues, primarily Ser1292 and Ser935, which impacts downstream phosphorylation of its substrates, among which Rab10. A comprehensive characterization of LRRK2 activity and phosphorylation in brain as a function of age and mutations is missing. Here, we monitored Ser935 and Ser1292 phosphorylation in midbrain, striatum, and cortex of 1, 6, and 12 months-old mice carrying G2019S and R1441C mutations or murine bacterial artificial chromosome (BAC)-Lrrk2-G2019S. We observed that G2019S and, at a greater extent, R1441C brains display decreased phospho-Ser935, while Ser1292 autophosphorylation increased in G2019S but not in R1441C brain, lung, and kidney compared to wild-type. Further, Rab10 phosphorylation, is elevated in R1441C carrying mice, indicating that the effect of LRRK2 mutations on substrate phosphorylation is not generalizable. In BAC-Lrrk2-G2019S striatum and midbrain, Rab10 phosphorylation, but not Ser1292 autophosphorylation, decreases at 12-months, pointing to autophosphorylation and substrate phosphorylation as uncoupled events. Taken together, our study provides novel evidence that LRRK2 phosphorylation in mouse brain is differentially impacted by mutations, brain area, and age, with important implications as diagnostic markers of disease progression and stratification.


2014 ◽  
Vol 197 (5) ◽  
pp. 913-923 ◽  
Author(s):  
François Daigle ◽  
Sylvain Lerat ◽  
Giselda Bucca ◽  
Édith Sanssouci ◽  
Colin P. Smith ◽  
...  

AlthoughStreptomyces coelicoloris not resistant to tellurite, it possesses several TerD domain-encoding (tdd) genes of unknown function. To elucidate the function oftdd8, the transcriptomes ofS. coelicolorstrain M145 and of atdd8deletion mutant derivative (the Δtdd8strain) were compared. Several orthologs ofMycobacterium tuberculosisgenes involved in dormancy survival were upregulated in the deletion mutant at the visual onset of prodiginine production. These genes are organized in a putative redox stress response cluster comprising two large loci. A binding motif similar to the dormancy survival regulator (DosR) binding site ofM. tuberculosishas been identified in the upstream sequences of most genes in these loci. A predicted role for these genes in the redox stress response is supported by the low NAD+/NADH ratio in the Δtdd8strain. ThisS. coelicolorgene cluster was shown to be induced by hypoxia and NO stress. While thetdd8deletion mutant (the Δtdd8strain) was unable to maintain calcium homeostasis in a calcium-depleted medium, the addition of Ca2+in Δtdd8culture medium reduced the expression of several genes of the redox stress response cluster. The results shown in this work are consistent with Tdd8 playing a significant role in calcium homeostasis and redox stress adaptation.


2019 ◽  
Author(s):  
Ibrahim Youssef ◽  
Jeffrey Law ◽  
Anna Ritz

AbstractUnderstanding cellular responses via signal transduction is a core focus in systems biology. Tools to automatically reconstruct signaling pathways from protein-protein interactions (PPIs) can help biologists generate testable hypotheses about signaling. However, automatic reconstruction of signaling pathways suffers from many interactions with the same confidence score leading to many equally good candidates. Further, some reconstructions are biologically misleading due to ignoring protein localization information. We proposeLocPL, a method to improve the automatic reconstruction of signaling pathways from PPIs by incorporating information about protein localization in the reconstructions. The method relies on a dynamic program to ensure that the proteins in a reconstruction are localized in cellular compartments that are consistent with signal transduction from the membrane to the nucleus.LocPLand existing reconstruction algorithms are applied to two PPI networks and assessed using both global and local definitions of accuracy.LocPLproduces more accurate and biologically meaningful reconstructions on a versatile set of signaling pathways.LocPLis a powerful tool to automatically reconstruct signaling pathways from PPIs that leverages cellular localization information about proteins. The underlying dynamic program and signaling model are flexible enough to study cellular signaling under different settings of signaling flow across the cellular compartments.


2004 ◽  
Vol 385 (1) ◽  
pp. 233-241 ◽  
Author(s):  
Lorena PERRONE ◽  
Simona PALADINO ◽  
Marialuisa MAZZONE ◽  
Lucio NITSCH ◽  
Massimo GULISANO ◽  
...  

The topology and trafficking of receptors play a key role in their signalling capability. Indeed, receptor function is related to the microenvironment inside the cell, where specific signalling molecules are compartmentalized. The response to NGF (nerve growth factor) is strongly dependent on the trafficking of its receptor, TrkA. However, information is still scarce about the role of the cellular localization of the TrkA co-receptor, p75NTR (where NTR is neurotrophin receptor), following stimulation by NGF. It has been shown that these two receptors play a key role in epithelial tissue and in epithelial-derived tumours, where the microenvironment at the plasma membrane is defined by the presence of tight junctions. Indeed, in thyroid carcinomas, rearrangements of TrkA are frequently found, which produce TrkA mutants that are localized exclusively in the cytoplasm. We used a thyroid cellular model in which it was possible to dissect the trafficking of the two NGF receptors upon neurotrophin stimulation. In FRT (Fischer rat thyroid) cells, endogenous TrkA is localized exclusively on the basolateral surface, while transfected p75NTR is selectively distributed on the apical membrane. This cellular system enabled us to selectively stimulate either p75NTR or TrkA and to analyse the role of receptor trafficking in their signalling capability. We found that, after binding to NGF, p75NTR was co-immunoprecipitated with TrkA and was transcytosed at the basolateral membrane. We showed that the TrkA–p75NTR interaction is necessary for this relocation of p75NTR to the basolateral side. Interestingly, TrkA-specific stimulation by basolateral NGF loading also induced the TrkA–p75NTR interaction and subsequent p75NTR transcytosis at the basolateral surface. Moreover, specific stimulation of p75NTR by NGF activated TrkA and the MAPK (mitogen-activated protein kinase) pathway. Our data indicate that TrkA regulates the subcellular localization of p75NTR upon stimulation with neurotrophins, thus affecting the topology of the signal transduction molecules, driving the activation of a specific signal transduction pathway.


1998 ◽  
Vol 111 (14) ◽  
pp. 1921-1928 ◽  
Author(s):  
H.M. Miettinen ◽  
J.M. Gripentrog ◽  
A.J. Jesaitis

Activation of the N-formyl peptide receptor (FPR) of human neutrophils by ligands such as N-formyl-methionine-leucine-phenylalanine (fMLP) induces mobilization of intracellular calcium, cell adhesion, chemotaxis, superoxide production and degranulation. Chinese hamster ovary (CHO) cells are normally devoid of FPR and unresponsive to fMLP, but when stably transfected with a human FPR cDNA, exhibited some of these same responses. Specifically, stimulation with fMLP resulted in release of intracellular calcium and chemotactic migration toward a gradient of fMLP. As in neutrophils, both processes were inhibited through receptor desensitization by prior exposure to a higher or equal concentration of ligand or by treatment with pertussis toxin. Soluble and membrane-bound fibronectin greatly increased fMLP-induced chemotaxis of CHO cells expressing FPR, but not of wild-type CHO cells, suggesting a role for FPR in activation of integrin function. Evidence for this hypothesis was obtained by demonstrating that CHO cells expressing FPR rapidly increased their adhesion to a fibronectin-coated surface after stimulation with fMLP. Both chemotaxis and adhesion were largely inhibited by RGDS peptide and a function-blocking antibody against alpha5 integrin. FPR-mediated chemotaxis of the CHO transfectants was partly inhibited by a tyrosine kinase inhibitor, herbimycin A, and blocked by a phosphoinositide 3-kinase inhibitor, wortmannin. These data suggest that stimulation of CHO FPR transfectants with a gradient of fMLP results in phosphoinositide 3-kinase-dependent chemotactic migration, which is enhanced by binding of activated alpha5beta1 to fibronectin. This non-myeloid, non-lymphoid fibroblastic cell line will thus serve as a useful model to investigate additional requirements of signal transduction molecules, adhesion molecules and cytoskeletal elements in FPR-mediated chemotaxis.


2018 ◽  
Vol 19 (11) ◽  
pp. 3324 ◽  
Author(s):  
Li Gu ◽  
Weilie Zheng ◽  
Mingjie Li ◽  
Hong Quan ◽  
Jianming Wang ◽  
...  

Mirabilis himalaica (Edgew.) Heimerl is one of the most important genuine medicinal plants in Tibet, in which the special plateau habitat has been associated with its excellent medicinal quality and efficacy. However, the mechanisms by which environmental factors affect biosynthesis of secondary metabolic components remain unclear in this species. In this study, RNA sequencing and iTRAQ (isobaric Tags for Relative and Absolute Quantification) techniques were used to investigate the critical molecular “events” of rotenoid biosynthesis responding to UV-B radiation, a typical plateau ecological factor presented in native environment-grown M. himalaica plants. A total of 3641 differentially expressed genes (DEGs) and 106 differentially expressed proteins (DEPs) were identified in M. himalaica between UV-B treatment and control check (CK). Comprehensive analysis of protein and transcript data sets resulted in 14 and 7 DEGs from the plant hormone signal transduction and phosphatidylinositol signaling system pathways, respectively, being significantly enriched. The result showed that the plant hormone signal transduction and phosphatidylinositol signaling system might be the key metabolic strategy of UV-B radiation to improve the biosynthesis of rotenoid in M. himalaica. At same time, most of the DEGs were associated with auxin and calcium signaling, inferring that they might drive the downstream transmission of these signal transduction pathways. Regarding those pathways, two chalcone synthase enzymes, which play key roles in the biosynthesis of rotenoid that were thought as the representative medicinal component of M. himalaica, were significantly upregulated in UV-B radiation. This study provides a theoretical basis for further exploration of the adaptation mechanism of M. himalaica to UV-B radiation, and references for cultivation standardization.


Sign in / Sign up

Export Citation Format

Share Document