scholarly journals Bacterial Community Structure and Dynamic Changes in Different Functional Areas of a Piggery Wastewater Treatment System

2021 ◽  
Vol 9 (10) ◽  
pp. 2134
Author(s):  
Lin Shi ◽  
Naiyuan Liu ◽  
Gang Liu ◽  
Jun Fang

Chemicals of emerging concern (CEC) in pig farm breeding wastewater, such as antibiotics, will soon pose a serious threat to public health. It is therefore essential to consider improving the treatment efficiency of piggery wastewater in terms of microorganisms. In order to optimize the overall piggery wastewater treatment system from the perspective of the bacterial community structure and its response to environmental factors, five samples were randomly taken from each area of a piggery’s wastewater treatment system using a random sampling method. The bacterial communities’ composition and their correlation with wastewater quality were then analyzed using Illumina MiSeq high-throughput sequencing. The results showed that the bacterial community composition of each treatment unit was similar. However, differences in abundance were significant, and the bacterial community structure gradually changed with the process. Proteobacteria showed more adaptability to an anaerobic environment than Firmicutes, and the abundance of Tissierella in anaerobic zones was low. The abundance of Clostridial (39.02%) and Bacteroides (20.6%) in the inlet was significantly higher than it was in the aerobic zone and the anoxic zone (p < 0.05). Rhodocyclaceae is a key functional microbial group in a wastewater treatment system, and it is a dominant microbial group in activated sludge. Redundancy analysis (RDA) showed that chemical oxygen demand (COD) had the greatest impact on bacterial community structure. Total phosphorus (TP), total nitrogen (TN), PH and COD contents were significantly negatively correlated with Sphingobacteriia, Betaproteobacteria and Gammaproteobacteria, and significantly positively correlated with Bacteroidia and Clostridia. These results offer basic data and theoretical support for optimizing livestock wastewater treatment systems using bacterial community structures.

2009 ◽  
Vol 8 (1) ◽  
pp. 147-157 ◽  
Author(s):  
Paula Arroyo ◽  
Gemma Ansola ◽  
Ivan Blanco ◽  
Patricia Molleda ◽  
Estanislao de Luis Calabuig ◽  
...  

This work provides information about bacterial community structure in natural wastewater treatment systems treating different types of wastewater. The diversity and composition of bacterial communities associated with the rhizosphere of Typha latifolia and Salix atrocinerea were studied and compared among two different natural wastewater treatment systems, using the direct sequencing of the 16S ribosomal RNA codifying genes. Phylogenetic affiliations of the bacteria detected allowed us to define the main groups present in these particular ecosystems. Moreover, bacterial community structure was studied through two diversity indices. Ten identified and five non-identified phyla were found in the samples; the phylum Proteobacteria was the predominant group in the four ecosystems. The results showed a bacterial community dominated by beta-proteobacteria and a lower diversity value in the swine wastewater treatment system. The municipal wastewater treatment system presented a high diverse community in both macrophytes (Typha latifolia and Salix atrocinerea), with gamma-proteobacteria and alpha-proteobacteria, respectively, as the most abundant groups.


Animals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 701 ◽  
Author(s):  
Fengling Zhang ◽  
Xingjia Xiang ◽  
Yuanqiu Dong ◽  
Shaofei Yan ◽  
Yunwei Song ◽  
...  

Intestinal bacterial communities form an integral component of the organism. Many factors influence gut bacterial community composition and diversity, including diet, environment and seasonality. During seasonal migration, birds use many habitats and food resources, which may influence their intestinal bacterial community structure. Hooded crane (Grus monacha) is a migrant waterbird that traverses long distances and occupies varied habitats. In this study, we investigated the diversity and differences in intestinal bacterial communities of hooded cranes over the migratory seasons. Fecal samples from hooded cranes were collected at a stopover site in two seasons (spring and fall) in Lindian, China, and at a wintering ground in Shengjin Lake, China. We analyzed bacterial communities from the fecal samples using high throughput sequencing (Illumina Mi-seq). Firmicutes, Proteobacteria, Tenericutes, Cyanobacteria, and Actinobacteria were the dominant phyla across all samples. The intestinal bacterial alpha-diversity of hooded cranes in winter was significantly higher than in fall and spring. The bacterial community composition significantly differed across the three seasons (ANOSIM, P = 0.001), suggesting that seasonal fluctuations may regulate the gut bacterial community composition of migratory birds. This study provides baseline information on the seasonal dynamics of intestinal bacterial community structure in migratory hooded cranes.


Sign in / Sign up

Export Citation Format

Share Document