scholarly journals Occurrence of Hybrid Diarrhoeagenic Escherichia coli Associated with Multidrug Resistance in Environmental Water, Johannesburg, South Africa

2021 ◽  
Vol 9 (10) ◽  
pp. 2163
Author(s):  
John Y. Bolukaoto ◽  
Atheesha Singh ◽  
Ntando Alfinete ◽  
Tobias G. Barnard

This study was undertaken to determine the virulence and antibiotic resistance profiles of diarrhoeagenic Escherichia coli (DEC) in environmental waters of Johannesburg, South Africa. Samples were collected and cultured on selective media. An 11-plex PCR assay was used to differentiate five DEC, namely: enteroaggregative (EAEC), enterohaemorrhagic (EHEC), enteroinvasive (EIEC), enteropathogenic (EPEC) and enterotoxigenic (ETEC). The antibiotic resistance profile of isolates was determined using the VITEK®-2 automated system. The virulence profiles of 170 E. coli tested showed that 40% (68/170) were commensals and 60% (102/170) were pathogenic. EPEC had a prevalence of 19.2% (32/170), followed by ETEC 11.4% (19/170), EAEC 6% (10/170) and EHEC 3% (5/170). Hybrid DEC carrying a combination of simultaneously two and three pathogenic types was detected in twenty-eight and nine isolates, respectively. The antibiotic susceptibility testing showed isolates with multidrug resistance, including cefuroxime (100%), ceftazidime (86%), cefotaxime (81%) and cefepime (79%). This study highlighted the widespread occurrence of DEC and antibiotic resistance strains in the aquatic ecosystem of Johannesburg. The presence of hybrid pathotypes detected in this study is alarming and might lead to more severe diseases. There is a necessity to enhance surveillance in reducing the propagation of pathogenic and antibiotic-resistant strains in this area.

Antibiotics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 28
Author(s):  
Nunziatina Russo ◽  
Alessandro Stamilla ◽  
Giuseppe Cascone ◽  
Cinzia Lucia Randazzo ◽  
Antonino Messina ◽  
...  

The emergence of multidrug resistance among Enterobacteriaceae in livestock poses a serious public health threat. Escherichia coli, a usual host of intestinal microbiota, is recognized also as etiological agent of numerous infections widespread in both humans and animals. The colibacillosis is one of the most reported zoonoses worldwide, typically treated with antibiotics in the primary stages. This strategy has promoted the onset of antibiotic-resistant serotypes of E. coli, reducing the effectiveness of therapeutic treatments and contributing to antibiotic resistance spread. The current study focused on biodiversity, pathogenicity, and antibiotic resistance profile of 104 E. coli strains isolated from domestic animals in Eastern Sicily. The strains were isolated from sick animals and carcasses of six different animal species and screened for resistance against 16 antibiotic molecules, as recommended by WHO and OIE. The antibiotic resistance patterns highlighted that all strains were multi-resistant, showing resistance to at least three antibiotic classes. The highest incidence of resistance was observed against amoxicillin (100%), tylosin (97%), sulfamethoxazole (98%), and erythromycin (92%), while the lowest for colistin (8%). The pathotype characterization identified two EPEC strains and the study of genetic linkage (PFGE) showed a wide variety of profiles. The current study emphasized the wide range of multidrug resistance and genotyping profiles in E. coli isolated in Easter Sicily.


Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 618
Author(s):  
Michaela Sannettha van den Honert ◽  
Pieter Andries Gouws ◽  
Louwrens Christiaan Hoffman

Although limited, studies have found conflicting results on whether co-grazing results in significant antibiotic resistance transfer between species. This type of farming system can act as a vector in the geographical spread of antibiotic-resistant bacteria in the environment. The aim of this study was to determine the antibiotic-resistant patterns between co-grazing and non-co-grazing livestock and wildlife species in South Africa. Escherichia coli was isolated from the faeces of various wildlife and livestock species from two farms in South Africa and was tested for antibiotic resistance using the Kirby–Bauer disk diffusion method against chloramphenicol, nalidixic acid, ampicillin, streptomycin, sulphafurazole, and tetracycline. A selection of some common antibiotic-resistant genes (blaCMY, aadA1, sul1, sul2, tetA, and tetB) were detected using PCR. The E. coli isolates from wildlife and livestock that co-grazed showed no significant differences in antibiotic resistance patterns. However, this was not the case for tetracycline resistance as the livestock isolates were significantly more resistant than the co-grazing wildlife isolates. The E. coli isolates from the non-co-grazing livestock and wildlife had significant differences in their antibiotic susceptibility patterns; the wildlife E. coli isolates were significantly more resistant to sulphafurazole and streptomycin than the livestock isolates, whilst those isolated from the cattle were significantly more resistant to ampicillin than the wildlife and sheep isolates. The results of this study suggest that there could be an exchange of antibiotic-resistant bacteria and genes between livestock and wildlife that co-graze.


2016 ◽  
Vol 65 (4) ◽  
pp. 83-89
Author(s):  
Nadezda S. Kozlova ◽  
Natalia E. Barantsevich ◽  
Elena P. Barantsevich

Relevance. Antimicrobial resistance in nosocomial strains currently presents a very important problem.  Aim of the study: Study of antibiotic resistance in Escherichia coli, isolated in a multidisciplinary centre.  Materials and Methods. Susceptibility of 151 E. coli strains to 15 antibiotics was studied by microdilution method. Results. The majority of the studied strains were resistant to antibiotics, including: ampicillin (57.0%), ciprofloxacin and moxifloxacin (42.4% each), III and IV generation cephalosporins (37.1% and 34.4%, respectively) and gentamycin (29.1%). The highest activity against E. coliwas shown for carbapenems (resistance to erthapenem – 2.6%, meropenem – 0.7%), in particular, for imipenem – no strains resistant to this drug were isolated. Resistance to amikacin and phosphomycin was low: 3.3% and 1.3% respectively. Wide diversity of antibiotic resistance spectra was revealed in studied strains, with a high level of multidrug resistance (48.0%). Conclusion. Study of susceptibility to antimicrobial agents in E. coli, isolated in a multidisciplinary centre, showed predominance of resistant strains with a high level of multidrug resistance. The appearance of carbapenem-resistant strains in a multidisciplinary centre presents a rising problem.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Carola Venturini ◽  
Tiziana Zingali ◽  
Ethan R. Wyrsch ◽  
Bethany Bowring ◽  
Jonathan Iredell ◽  
...  

AbstractThe spread of multidrug resistance via mobile genetic elements is a major clinical and veterinary concern. Pathogenic Escherichia coli harbour antibiotic resistance and virulence genes mainly on plasmids, but also bacteriophages and hybrid phage-like plasmids. In this study, the genomes of three E. coli phage-like plasmids, pJIE250-3 from a human E. coli clinical isolate, pSvP1 from a porcine ETEC O157 isolate, and pTZ20_1P from a porcine commensal E. coli, were sequenced (PacBio RSII), annotated and compared. All three elements are coliphage P1 variants, each with unique adaptations. pJIE250-3 is a P1-derivative that has lost lytic functions and contains no accessory genes. In pTZ20_1P and pSvP1, a core P1-like genome is associated with insertion sequence-mediated acquisition of plasmid modules encoding multidrug resistance and virulence, respectively. The transfer ability of pTZ20_1P, carrying antibiotic resistance markers, was also tested and, although this element was not able to transfer by conjugation, it was able to lysogenize a commensal E. coli strain with consequent transfer of resistance. The incidence of P1-like plasmids (~7%) in our E. coli collections correlated well with that in public databases. This study highlights the need to investigate the contribution of phage-like plasmids to the successful spread of antibiotic resistant pathotypes.


Antibiotics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 575
Author(s):  
Emi Nishimura ◽  
Masateru Nishiyama ◽  
Kei Nukazawa ◽  
Yoshihiro Suzuki

Information on the actual existence of antibiotic-resistant bacteria in rivers where sewage, urban wastewater, and livestock wastewater do not load is essential to prevent the spread of antibiotic-resistant bacteria in water environments. This study compared the antibiotic resistance profile of Escherichia coli upstream and downstream of human habitation. The survey was conducted in the summer, winter, and spring seasons. Resistance to one or more antibiotics at upstream and downstream sites was on average 18% and 20%, respectively, and no significant difference was observed between the survey sites. The resistance rates at the upstream site (total of 98 isolated strains) to each antibiotic were cefazolin 17%, tetracycline 12%, and ampicillin 8%, in descending order. Conversely, for the downstream site (total of 89 isolated strains), the rates were ampicillin 16%, cefazolin 16%, and tetracycline 1% in descending order. The resistance rate of tetracycline in the downstream site was significantly lower than that of the upstream site. Furthermore, phylogenetic analysis revealed that many strains showed different resistance profiles even in the same cluster of the Pulsed-Field Gel Electrophoresis (PFGE) pattern. Moreover, the resistance profiles differed in the same cluster of the upstream and the downstream sites. In flowing from the upstream to the downstream site, it is plausible that E. coli transmitted or lacked the antibiotic resistance gene.


2004 ◽  
Vol 48 (10) ◽  
pp. 3996-4001 ◽  
Author(s):  
Yolanda Sáenz ◽  
Laura Briñas ◽  
Elena Domínguez ◽  
Joaquim Ruiz ◽  
Myriam Zarazaga ◽  
...  

ABSTRACT Seventeen multiple-antibiotic-resistant nonpathogenic Escherichia coli strains of human, animal, and food origins showed a wide variety of antibiotic resistance genes, many of them carried by class 1 and class 2 integrons. Amino acid changes in MarR and mutations in marO were identified for 15 and 14 E. coli strains, respectively.


Pathogens ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 811
Author(s):  
Md. Akil Hossain ◽  
Hae-Chul Park ◽  
Sung-Won Park ◽  
Seung-Chun Park ◽  
Min-Goo Seo ◽  
...  

Pathogenic Escherichia coli (E. coli)-associated infections are becoming difficult to treat because of the rapid emergence of antibiotic-resistant strains. Novel approaches are required to prevent the progression of resistance and to extend the lifespan of existing antibiotics. This study was designed to improve the effectiveness of traditional antibiotics against E. coli using a combination of the gallic acid (GA), hamamelitannin, epicatechin gallate, epigallocatechin, and epicatechin. The fractional inhibitory concentration index (FICI) of each of the phenolic compound-antibiotic combinations against E. coli was ascertained. Considering the clinical significance and FICI, two combinations (hamamelitannin-erythromycin and GA-ampicillin) were evaluated for their impact on certain virulence factors of E. coli. Finally, the effects of hamamelitannin and GA on Rattus norvegicus (IEC-6) cell viability were investigated. The FICIs of the antibacterial combinations against E. coli were 0.281–1.008. The GA-ampicillin and hamamelitannin-erythromycin combinations more effectively prohibited the growth, biofilm viability, and swim and swarm motilities of E. coli than individual antibiotics. The concentration of hamamelitannin and GA required to reduce viability by 50% (IC50) in IEC-6 cells was 988.54 μM and 564.55 μM, correspondingly. GA-ampicillin and hamamelitannin-erythromycin may be potent combinations and promising candidates for eradicating pathogenic E. coli in humans and animals.


2019 ◽  
Vol 12 (7) ◽  
pp. 984-993 ◽  
Author(s):  
Md. Abdus Sobur ◽  
Abdullah Al Momen Sabuj ◽  
Ripon Sarker ◽  
A. M. M. Taufiqur Rahman ◽  
S. M. Lutful Kabir ◽  
...  

Aim: The present study was carried out to determine load of total bacteria, Escherichia coli and Salmonella spp. in dairy farm and its environmental components. In addition, the antibiogram profile of the isolated bacteria having public health impact was also determined along with identification of virulence and resistance genes by polymerase chain reaction (PCR) under a one-health approach. Materials and Methods: A total of 240 samples of six types (cow dung - 15, milk - 10, milkers' hand wash - 10, soil - 10 water - 5, and vegetables - 10) were collected from four dairy farms. For enumeration, the samples were cultured onto plate count agar, eosin methylene blue, and xylose-lysine deoxycholate agar and the isolation and identification of the E. coli and Salmonella spp. were performed based on morphology, cultural, staining, and biochemical properties followed by PCR. The pathogenic strains of E. coli stx1, stx2, and rfbO157 were also identified through PCR. The isolates were subjected to antimicrobial susceptibility test against 12 commonly used antibiotics by disk diffusion method. Detection of antibiotic resistance genes ereA, tetA, tetB, and SHV were performed by PCR. Results: The mean total bacterial count, E. coli and Salmonella spp. count in the samples ranged from 4.54±0.05 to 8.65±0.06, 3.62±0.07 to 7.04±0.48, and 2.52±0.08 to 5.87±0.05 log colony-forming unit/g or ml, respectively. Out of 240 samples, 180 (75%) isolates of E. coli and 136 (56.67%) isolates of Salmonella spp. were recovered through cultural and molecular tests. Among the 180 E. coli isolates, 47 (26.11%) were found positive for the presence of all the three virulent genes, of which stx1 was the most prevalent (13.33%). Only three isolates were identified as enterohemorrhagic E. coli. Antibiotic sensitivity test revealed that both E. coli and Salmonella spp. were found highly resistant to azithromycin, tetracycline, erythromycin, oxytetracycline, and ertapenem and susceptible to gentamycin, ciprofloxacin, and imipenem. Among the four antibiotic resistance genes, the most observable was tetA (80.51-84.74%) in E. coli and Salmonella spp. and SHV genes were the lowest one (22.06-25%). Conclusion: Dairy farm and their environmental components carry antibiotic-resistant pathogenic E. coli and Salmonella spp. that are potential threat for human health which requires a one-health approach to combat the threat.


2019 ◽  
Vol 366 (8) ◽  
Author(s):  
Sophie Van Hamelsveld ◽  
Muyiwa E Adewale ◽  
Brigitta Kurenbach ◽  
William Godsoe ◽  
Jon S Harding ◽  
...  

Abstract Baseline studies are needed to identify environmental reservoirs of non-pathogenic but associating microbiota or pathogenic bacteria that are resistant to antibiotics and to inform safe use of freshwater ecosystems in urban and agricultural settings. Mesophilic bacteria and Escherichia coli were quantified and isolated from water and sediments of two rivers, one in an urban and one in an agricultural area near Christchurch, New Zealand. Resistance of E. coli to one or more of nine different antibiotics was determined. Additionally, selected strains were tested for conjugative transfer of resistances. Despite having similar concentrations of mesophilic bacteria and E. coli, the rivers differed in numbers of antibiotic-resistant E. coli isolates. Fully antibiotic-susceptible and -resistant strains coexist in the two freshwater ecosystems. This study was the first phase of antibiotic resistance profiling in an urban setting and an intensifying dairy agroecosystem. Antibiotic-resistant E. coli may pose different ingestion and contact risks than do susceptible E. coli. This difference cannot be seen in population counts alone. This is an important finding for human health assessments of freshwater systems, particularly where recreational uses occur downstream.


Author(s):  
Nada Hanna ◽  
Manju Purohit ◽  
Vishal Diwan ◽  
Salesh P. Chandran ◽  
Emilia Riggi ◽  
...  

The emergence of antibiotic resistance is a major global and environmental health issue, yet the presence of antibiotic residues and resistance in the water and sediment of a river subjected to excessive anthropogenic activities and their relationship with water quality of the river are not well studied. The objectives of the present study were a) to investigate the occurrence of antibiotic residues and antibiotic-resistant Escherichia coli (E. coli) in the water and sediment of the Kshipra river in India at seven selected sites during different seasons of the years 2014, 2015, and 2016 and b) to investigate the association between antibiotic residues and antibiotic-resistant E. coli in water and sediment and measured water quality parameters of the river. Antibiotic residues and resistant E. coli were present in the water and sediment and were associated with the measured water quality parameters. Sulfamethoxazole was the most frequently detected antibiotic in water at the highest concentration of 4.66 µg/L and was positively correlated with the water quality parameters. Significant (p < 0.05) seasonal and spatial variations of antibiotic-resistant E. coli in water and sediment were found. The resistance of E. coli to antibiotics (e.g., sulfamethiazole, norfloxacin, ciprofloxacine, cefotaxime, co-trimoxazole, ceftazidime, meropenem, ampicillin, amikacin, metronidazole, tetracycline, and tigecycline) had varying associations with the measured water and sediment quality parameters. Based on the results of this study, it is suggested that regular monitoring and surveillance of water quality, including antibiotic residues and antibiotic resistance, of all rivers should be taken up as a key priority, in national and Global Action Plans as these can have implications for the buildup of antibiotic resistance.


Sign in / Sign up

Export Citation Format

Share Document