scholarly journals Coordinating Carbon Metabolism and Cell Cycle of Chlamydomonasreinhardtii with Light Strategies under Nitrogen Recovery

2021 ◽  
Vol 9 (12) ◽  
pp. 2480
Author(s):  
Yuanyuan Ren ◽  
Han Sun ◽  
Jinquan Deng ◽  
Yue Zhang ◽  
Yuelian Li ◽  
...  

Nutrient supplementation is common in microalgae cultivation to enhance the accumulation of biomass and biofunctional products, while the recovery mechanism from nutrient starvation is less investigated. In this study, the influence of remodeled carbon metabolism on cell cycle progression was explored by using different light wavelengths under N-repletion and N-recovery. The results suggested that blue light enhanced cell enlargement and red light promoted cell division under N-repletion. On the contrary, blue light promoted cell division by stimulating cell cycle progression under N-recovery. This interesting phenomenon was ascribed to different carbon metabolisms under N-repletion and N-recovery. Blue light promoted the recovery of photosystem II and redirected carbon skeletons into proteins under N-recovery, which potentially accelerated cell recovery and cell cycle progression. Although red light also facilitated the recovery of photosystem II, it mitigated the degradation of polysaccharide and then arrested almost all the cells in the G1 phase. By converting light wavelengths at the 12 h of N-recovery with blue light, red and white lights were proved to increase biomass concentration better than continuous blue light. These results revealed different mechanisms of cell metabolism of Chlamydomonas reinhardtii during N-recovery and could be applied to enhance cell vitality of microalgae from nutrient starvation and boost biomass production.

2019 ◽  
Vol 202 (2) ◽  
Author(s):  
Peter E. Burby ◽  
Lyle A. Simmons

ABSTRACT All organisms regulate cell cycle progression by coordinating cell division with DNA replication status. In eukaryotes, DNA damage or problems with replication fork progression induce the DNA damage response (DDR), causing cyclin-dependent kinases to remain active, preventing further cell cycle progression until replication and repair are complete. In bacteria, cell division is coordinated with chromosome segregation, preventing cell division ring formation over the nucleoid in a process termed nucleoid occlusion. In addition to nucleoid occlusion, bacteria induce the SOS response after replication forks encounter DNA damage or impediments that slow or block their progression. During SOS induction, Escherichia coli expresses a cytoplasmic protein, SulA, that inhibits cell division by directly binding FtsZ. After the SOS response is turned off, SulA is degraded by Lon protease, allowing for cell division to resume. Recently, it has become clear that SulA is restricted to bacteria closely related to E. coli and that most bacteria enforce the DNA damage checkpoint by expressing a small integral membrane protein. Resumption of cell division is then mediated by membrane-bound proteases that cleave the cell division inhibitor. Further, many bacterial cells have mechanisms to inhibit cell division that are regulated independently from the canonical LexA-mediated SOS response. In this review, we discuss several pathways used by bacteria to prevent cell division from occurring when genome instability is detected or before the chromosome has been fully replicated and segregated.


2012 ◽  
Vol 80 (4) ◽  
pp. 1467-1478 ◽  
Author(s):  
Carolina Coelho ◽  
Lydia Tesfa ◽  
Jinghang Zhang ◽  
Johanna Rivera ◽  
Teresa Gonçalves ◽  
...  

ABSTRACTWe investigated the outcome of the interaction ofCryptococcus neoformanswith murine macrophages using laser scanning cytometry (LSC). Previous results in our lab had shown that phagocytosis ofC. neoformanspromoted cell cycle progression. LSC allowed us to simultaneously measure the phagocytic index, macrophage DNA content, and 5-ethynyl-2′-deoxyuridine (EdU) incorporation such that it was possible to study host cell division as a function of phagocytosis. LSC proved to be a robust, reliable, and high-throughput method for quantifying phagocytosis. Phagocytosis ofC. neoformanspromoted cell cycle progression, but infected macrophages were significantly less likely to complete mitosis. Hence, we report a new cytotoxic effect associated with intracellularC. neoformansresidence that manifested itself in impaired cell cycle completion as a consequence of a block in the G2/M stage of the mitotic cell cycle. Cell cycle arrest was not due to increased cell membrane permeability or DNA damage. We investigated alveolar macrophage replicationin vivoand demonstrated that these cells are capable of low levels of cell division in the presence or absence ofC. neoformansinfection. In summary, we simultaneously studied phagocytosis, the cell cycle state of the host cell and pathogen-mediated cytotoxicity, and our results demonstrate a new cytotoxic effect ofC. neoformansinfection on murine macrophages: fungus-induced cell cycle arrest. Finally, we provide evidence for alveolar macrophage proliferationin vivo.


2021 ◽  
Author(s):  
Anna Katharina Schlusche ◽  
Sabine Ulrike Vay ◽  
Niklas Kleinenkuhnen ◽  
Steffi Sandke ◽  
Rafael Campos-Martin ◽  
...  

ABSTRACTThe development of the cerebral cortex relies on the controlled division of neural stem and progenitor cells. The requirement for precise spatiotemporal control of proliferation and cell fate places a high demand on the cell division machinery, and defective cell division can cause microcephaly and other brain malformations. Cell-extrinsic and intrinsic factors govern the capacity of cortical progenitors to produce large numbers of neurons and glia within a short developmental time window. In particular, ion channels shape the intrinsic biophysical properties of precursor cells and neurons and control their membrane potential throughout the cell cycle. We found that hyperpolarization-activated cyclic nucleotide-gated cation (HCN)-channel subunits are expressed in mouse, rat, and human neural progenitors. Loss of HCN-channel function in rat neural stem cells impaired their proliferation by affecting the cell-cycle progression, causing G1 accumulation and dysregulation of genes associated with human microcephaly. Transgene-mediated, dominant-negative loss of HCN-channel function in the embryonic mouse telencephalon resulted in pronounced microcephaly. Together, our findings suggest a novel role for HCN-channel subunits as a part of a general mechanism influencing cortical development in mammals.Significance StatementImpaired cell cycle regulation of neural stem and progenitor cells can affect cortical development and cause microcephaly. During cell cycle progression, the cellular membrane potential changes through the activity of ion channels and tends to be more depolarized in proliferating cells. HCN channels, which mediate a depolarizing current in neurons and cardiac cells, are linked to neurodevelopmental diseases, also contribute to the control of cell-cycle progression and proliferation of neuronal precursor cells. In this study, HCN-channel deficiency during embryonic and fetal brain development resulted in marked microcephaly of mice designed to be deficient in HCN-channel function in dorsal forebrain progenitors. The findings suggest that HCN-channel subunits are part of a general mechanism influencing cortical development in mammals.


2020 ◽  
Vol 52 (10) ◽  
pp. 1637-1651 ◽  
Author(s):  
Sang-Min Jang ◽  
Christophe E. Redon ◽  
Bhushan L. Thakur ◽  
Meriam K. Bahta ◽  
Mirit I. Aladjem

Abstract The last decade has revealed new roles for Cullin-RING ubiquitin ligases (CRLs) in a myriad of cellular processes, including cell cycle progression. In addition to CRL1, also named SCF (SKP1-Cullin 1-F box protein), which has been known for decades as an important factor in the regulation of the cell cycle, it is now evident that all eight CRL family members are involved in the intricate cellular pathways driving cell cycle progression. In this review, we summarize the structure of CRLs and their functions in driving the cell cycle. We focus on how CRLs target key proteins for degradation or otherwise alter their functions to control the progression over the various cell cycle phases leading to cell division. We also summarize how CRLs and the anaphase-promoting complex/cyclosome (APC/C) ligase complex closely cooperate to govern efficient cell cycle progression.


Development ◽  
2020 ◽  
Vol 147 (19) ◽  
pp. dev180042
Author(s):  
Hirotaka Tao ◽  
Jean-Philippe Lambert ◽  
Theodora M. Yung ◽  
Min Zhu ◽  
Noah A. Hahn ◽  
...  

ABSTRACTPattern formation is influenced by transcriptional regulation as well as by morphogenetic mechanisms that shape organ primordia, although factors that link these processes remain under-appreciated. Here we show that, apart from their established transcriptional roles in pattern formation, IRX3/5 help to shape the limb bud primordium by promoting the separation and intercalation of dividing mesodermal cells. Surprisingly, IRX3/5 are required for appropriate cell cycle progression and chromatid segregation during mitosis, possibly in a nontranscriptional manner. IRX3/5 associate with, promote the abundance of, and share overlapping functions with co-regulators of cell division such as the cohesin subunits SMC1, SMC3, NIPBL and CUX1. The findings imply that IRX3/5 coordinate early limb bud morphogenesis with skeletal pattern formation.


2015 ◽  
Vol 112 (29) ◽  
pp. 9046-9051 ◽  
Author(s):  
Jianming Jiang ◽  
Patrick G. Burgon ◽  
Hiroko Wakimoto ◽  
Kenji Onoue ◽  
Joshua M. Gorham ◽  
...  

Homozygous cardiac myosin binding protein C-deficient (Mybpct/t) mice develop dramatic cardiac dilation shortly after birth; heart size increases almost twofold. We have investigated the mechanism of cardiac enlargement in these hearts. Throughout embryogenesis myocytes undergo cell division while maintaining the capacity to pump blood by rapidly disassembling and reforming myofibrillar components of the sarcomere throughout cell cycle progression. Shortly after birth, myocyte cell division ceases. Cardiac MYBPC is a thick filament protein that regulates sarcomere organization and rigidity. We demonstrate that many Mybpct/t myocytes undergo an additional round of cell division within 10 d postbirth compared with their wild-type counterparts, leading to increased numbers of mononuclear myocytes. Short-hairpin RNA knockdown of Mybpc3 mRNA in wild-type mice similarly extended the postnatal window of myocyte proliferation. However, adult Mybpct/t myocytes are unable to fully regenerate the myocardium after injury. MYBPC has unexpected inhibitory functions during postnatal myocyte cytokinesis and cell cycle progression. We suggest that human patients with homozygous MYBPC3-null mutations develop dilated cardiomyopathy, coupled with myocyte hyperplasia (increased cell number), as observed in Mybpct/t mice. Human patients, with heterozygous truncating MYBPC3 mutations, like mice with similar mutations, have hypertrophic cardiomyopathy. However, the mechanism leading to hypertrophic cardiomyopathy in heterozygous MYBPC3+/− individuals is myocyte hypertrophy (increased cell size), whereas the mechanism leading to cardiac dilation in homozygous Mybpc3−/− mice is primarily myocyte hyperplasia.


2018 ◽  
Author(s):  
Benjamin R. Topacio ◽  
Evgeny Zatulovskiy ◽  
Sandra Cristea ◽  
Shicong Xie ◽  
Carrie S. Tambo ◽  
...  

SummaryThe cyclin-dependent kinases Cdk4 and Cdk6 form complexes with D-type cyclins to drive cell proliferation. A well-known target of cyclin D-Cdk4,6 is the retinoblastoma protein, Rb, which inhibits cell cycle progression until its inactivation by phosphorylation. However, the role of cyclin D-Cdk4,6 phosphorylation of Rb in cell cycle progression is unclear because Rb can be phosphorylated by other cyclin-Cdk complexes and cyclin D-Cdk4,6 complexes have other targets that may drive cell division. Here, we show that cyclin D-Cdk4,6 docks one side of an alpha-helix in the C-terminus of Rb, which is not recognized by cyclins E, A, and B. This helix-based docking mechanism is shared by the p107 and p130 Rb-family members across metazoans. Mutation of the Rb C-terminal helix prevents phosphorylation, promotes G1 arrest, and enhances Rb’s tumor suppressive function. Our work conclusively demonstrates that the cyclin D-Rb interaction drives cell division and defines a new class of cyclin-based docking mechanisms.


Sign in / Sign up

Export Citation Format

Share Document