scholarly journals Hyperspectral Characteristics of Oil Sand, Part 2: Prediction of Froth Characteristics from Measurements of Froth

Minerals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1137
Author(s):  
Benoit Rivard ◽  
Jilu Feng ◽  
Derek Russell ◽  
Vivek Bushan ◽  
Michael Lipsett

This is the second part of a study of predictive models of oil sand ore and froth characteristics using infrared hyperspectral data as a potential new means for process control. In Alberta, Canada, bitumen in shallow oil sands deposits is accessed by surface mining and then extracted from ore using flotation processes. The ore displays variability in the clay, bitumen, and fines content and this variability affects the separability and product quality in flotation units. Flotation experiments were performed on a set of ore samples of different types to generate froth and determine the ore processability (e.g., separation performance) and froth characteristics (bitumen and solids content, fines distribution). We show that point spectra and spectral imagery of good quality can be acquired rapidly (<1 s and <15 s, respectively) and these capture spectral features diagnostic of bitumen and solids. Ensuing models can predict the solids/bitumen (r2 = 0.88) and the %fines and ultrafines (particle passing at 3.9 and 0.5 µm) content of froth (r2 = 0.8 and 0.9, respectively). The latter model could be used to reject froth with a high solids content. Alternately, the strength of the illite-smectite absorption observed in froth could be used to retain all the samples above a pre-defined processability. Given that point spectrometers can currently be acquired for less than half the cost of an imaging system, we recommend the use of the former for future trials in operating environments.

Minerals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1138
Author(s):  
Benoit Rivard ◽  
Jilu Feng ◽  
Derek Russell ◽  
Vivek Bhushan ◽  
Michael Lipsett

This study is the first of two companion papers using hyperspectral data to generate predictive models of oil sand ore and froth characteristics as a potential new means for process control. In Alberta, Canada, shallow oil sands deposits are accessed by surface mining and crushed ore is transported to a processing plant for extraction of bitumen using flotation processes. The ore displays considerable variability in clay, bitumen, and fines which affects their behavior in flotation units. Using oil sand ore spanning a range of bitumen and fines characteristics, flotation experiments were performed to generate froth in a batch extractor to determine ore processability (e.g., separation performance) and froth characteristics (color, bitumen, solids). From hyperspectral observations of ore, models can predict the %bitumen content and %fines (particle passing at 44 and 3.9 µm) of ore but the models with highest r2 (>0.96) predict the solids/bitumen of froth and the processability of ore. Spectral observations collected on ore upstream of the separation vessels could therefore offer a first order assessment of froth quality for an ore blend before the ore enters the plant. These models could also potentially be used to monitor and control the performance of the blending process as another means to control the performance of the flotation process.


1981 ◽  
Vol 59 (10) ◽  
pp. 1527-1530 ◽  
Author(s):  
D. Lorne Ball ◽  
E. D. Cooke ◽  
Jean M. Cooley ◽  
M. Coreen Hamilton ◽  
Robert Schutte

A simple and rapid method has been developed to measure the bitumen, water, and solids content of Athabasca oil sand samples in order to efficiently serve both plant operations and research needs. A solvent blend of 74% toluene and 26% isopropyl alcohol extracts both the bitumen and the water from the solids producing a homogeneous liquid phase. The bitumen is determined gravimetrically on an aliquot of this solution. A Karl Fischer titration is used to measure the water concentration. Solids are measured gravimetrically or can be reported by difference. Mass balances between 99.05 and 100.25% are achieved routinely.


2006 ◽  
Vol 9 (06) ◽  
pp. 654-663 ◽  
Author(s):  
Jonathan L. Bryan ◽  
An T. Mai ◽  
Florence M. Hum ◽  
Apostolos Kantzas

Summary Low-field nuclear magnetic resonance (NMR) relaxometry has been used successfully to perform estimates of oil and water content in unconsolidated oil-sand samples. This work has intriguing applications in the oil-sands mining and processing industry, in the areas of ore and froth characterization. Studies have been performed on a database of ore and froth samples from the Athabasca region in northern Alberta, Canada. In this paper, new automated algorithms are presented that predict the oil- and water-weight content of oil-sand ores and froths. Suites of real and synthetic samples of bitumen, water, clay, and sand have also been used to investigate the physical interactions of the different parameters on the NMR spectra. Preliminary observations regarding spectral properties indicate that it may be possible in the future to estimate the amount of clay in the samples, based upon shifts in the NMR spectra. NMR estimates of oil and water content are fairly accurate, thus enhancing the possibility of using NMR for oil-sands development and in the oil-sands mining industry. Introduction The oil sands of northern Alberta contain some of the world's largest deposits of heavy oil and bitumen. As our conventional oil reserves continue to decline, these oil sands will be the future of the Canadian oil industry for years to come and will allow Canada to continue to be a world leader in both oil production and technology development. Approximately 19% of these bitumen reserves are found in unconsolidated deposits that lie close enough to the surface that they can be recovered with surface-mining technology (Alberta Energy and Utilities Board 2004). In 2003, this translated to 35% of all heavy-oil and bitumen production (Alberta Energy and Utilities Board 2004), and numerous companies have invested billions of dollars in oil-sands mine-development projects. Furthermore, many in-situ bitumen-recovery options are currently being designed and field tested for recovering oil in deeper formations (Natl. Energy Board 2004). Being able to predict oil properties and fluid saturation in situ and process optimization of bitumen extraction (frothing) is therefore of considerable value to the industry. There are several areas in oil-sands development operations where it is important to have an estimate of the oil, water, and solids content of a given sample. During initial characterization of the reservoir, it is necessary to determine oil and water content with depth and location in the reservoir. Fluid-content determination with logging tools would be beneficial for all reservoir-characterization studies, whether for oil-sands mining or in-situ bitumen recovery. In mining operations, during the processing of the mined oil-sand ore, having information about the oil, water, and solids content during the extraction process will allow for improved process optimization and control. The industry standard for measuring oil, water, and solids content accurately is the Dean-Stark (DS) extraction method (Core Laboratories 1992). This is essentially a distillation procedure, whereby boiling solvent is used to vaporize water and separate the oil from the sand. Oil, water, and solids are separated and their contents measured separately. The problem with DS is that it requires large amounts of solvents and is time consuming. Centrifuge technology is often used for faster process control, but this can be inaccurate because of similar fluid densities and the presence of emulsions. New methods for fast measurements of oil, water, and solids content are needed.


Author(s):  
John A. Ripmeester ◽  
L. S. Kotlyar

The two oil sands plants operated by Syncrude Canada Ltd. and Suncor Canada Ltd. near Fort MacMurray, Alberta, use a hot water process for the separation of bitumen from oil sands. In brief, hot water and oil sands, with caustic soda as dispersing agent, are mixed thoroughly, and bitumen is floated to the top of the resulting slurry by streams of air. After secondary bitumen recovery, the remaining tailings are carried to ponds, where the coarse sands are used to form dikes, the fine tails are left to settle, and freed water is recycled. Typical production figures for the Syncrude plant are 390 000 barrels of diluted bitumen per day produced from 325 000 tonnes of oil sand. One complicating factor is that the fine tails dewater only to a solids content of ~30%, requiring ponds of ever increasing size (the Syncrude pond is 22km2) to store the resulting sludge. As the ponded material is toxic to wildlife, it poses a considerable local environmental hazard. In addition, there is the potential hazard of contamination of surface water and a major river system as a result of seepage or potential dike failure. The work reported here was carried out as part of a major project initiated to address the problem of the existing tailings ponds, and also to modify the currently used separation process so as not to produce sludge. Starting with the recognition that the very stable fine tails, consisting of water, silt, clay and residual bitumen, have gel-like properties, we employed the strategy of fractionating the fine tails with the hope of identifying a specific fraction which might show gel-forming propensity. This was done by breaking the gel, and collecting fractions according to sedimentation behavior during centrifugation. Fractions consisting of the coarser solids (>0.5μm) settled rapidly, whereas fractions with smaller particle sizes (termed ultrafines) gave suspensions which set into stiff, thixotropic gels on standing. Gel formation and the sol-gel transition in colloidal clay suspensions are classical problems which have received much attention over the years; however, much remains to be learned. NMR techniques have shown considerable promise in understanding clay-water interactions at a microscopic level.


1981 ◽  
Vol 16 (1) ◽  
pp. 71-90 ◽  
Author(s):  
F. Tran ◽  
D. Gannon

Abstract The Deep Shaft process, originating from ICI Ltd. in the U.K., has been further developed by C-I-L Inc., Eco-Technology Division into an extremely energy efficient, high rate biological treatment process for industrial and municipal wastewaters. The Deep Shaft is essentially an air-lift reactor, sunk deep in the ground (100 - 160 m): the resulting high hydrostatic pressure together with very efficient mixing in the shaft provide extremely high oxygen transfer efficiencies (O.T.E.) of up to 90% vs 4 to 20% in other aerators. This high O.T.E. suggests real potential for Deep Shaft technology in the aerobic digestion of sludges and animal wastes: with conventional aerobic digesters an O.T.E. over 8% is extremely difficult to achieve. This paper describes laboratory and pilot plant Deep Shaft aerobic digester (DSAD) studies carried out at Eco-Research's Pointe Claire, Quebec laboratories, and at the Paris, Ontario pilot Deep Shaft digester. An economic pre-evaluation indicated that DSAD had the greatest potential for treating high solids content primary or secondary sludge (3-7% total solids) in the high mesophilic and thermophilic temperature range (25-60°C) i.e. in cases where conventional digesters would experience severe limitations of oxygen transfer. Laboratory and pilot plant studies have accordingly concentrated on high solids content sludge digestion as a function of temperature. Laboratory scale daily draw and fill DSAD runs with a 5% solids sludge at 33°C with a 3 day retention time have achieved 34% volatile solids reduction and a stabilized sludge exhibiting a specific oxygen uptake rate (S.O.U.R.) of less than 1 mgO2/gVSS/hour, measured at 20°C. This digestion rate is about four times faster than the best conventional digesters. Using Eco-Research's Paris, Ontario pilot scale DSAD (a 160 m deep 8 cm diameter u-tube), a 40% reduction in total volatile solids, (or 73% reduction of biodegradable VS) and a final SOUR of 1.2 mg02/gVSS/hour have been achieved for a 4.6% solids sludge in 4 days at 33°C, with loading rates of up to 7.9 kg VSS/m3-day. Laboratory runs at thermophilic temperatures (up to 60°C) have demonstrated that a stabilized sludge (24-41% VSS reduction) can be produced in retention time of 2 days or less, with a resulting loading rate exceeding 10 kg VSS/m3-day.


2018 ◽  
Vol 18 (10) ◽  
pp. 7361-7378 ◽  
Author(s):  
Sabour Baray ◽  
Andrea Darlington ◽  
Mark Gordon ◽  
Katherine L. Hayden ◽  
Amy Leithead ◽  
...  

Abstract. Aircraft-based measurements of methane (CH4) and other air pollutants in the Athabasca Oil Sands Region (AOSR) were made during a summer intensive field campaign between 13 August and 7 September 2013 in support of the Joint Canada–Alberta Implementation Plan for Oil Sands Monitoring. Chemical signatures were used to identify CH4 sources from tailings ponds (BTEX VOCs), open pit surface mines (NOy and rBC) and elevated plumes from bitumen upgrading facilities (SO2 and NOy). Emission rates of CH4 were determined for the five primary surface mining facilities in the region using two mass-balance methods. Emission rates from source categories within each facility were estimated when plumes from the sources were spatially separable. Tailings ponds accounted for 45 % of total CH4 emissions measured from the major surface mining facilities in the region, while emissions from operations in the open pit mines accounted for ∼ 50 %. The average open pit surface mining emission rates ranged from 1.2 to 2.8 t of CH4 h−1 for different facilities in the AOSR. Amongst the 19 tailings ponds, Mildred Lake Settling Basin, the oldest pond in the region, was found to be responsible for the majority of tailings ponds emissions of CH4 (> 70 %). The sum of measured emission rates of CH4 from the five major facilities, 19.2 ± 1.1 t CH4 h−1, was similar to a single mass-balance determination of CH4 from all major sources in the AOSR determined from a single flight downwind of the facilities, 23.7 ± 3.7 t CH4 h−1. The measured hourly CH4 emission rate from all facilities in the AOSR is 48 ± 8 % higher than that extracted for 2013 from the Canadian Greenhouse Gas Reporting Program, a legislated facility-reported emissions inventory, converted to hourly units. The measured emissions correspond to an emissions rate of 0.17 ± 0.01 Tg CH4 yr−1 if the emissions are assumed as temporally constant, which is an uncertain assumption. The emission rates reported here are relevant for the summer season. In the future, effort should be devoted to measurements in different seasons to further our understanding of the seasonal parameters impacting fugitive emissions of CH4 and to allow for better estimates of annual emissions and year-to-year variability.


2016 ◽  
Vol 43 (12) ◽  
pp. 1025-1033 ◽  
Author(s):  
Xiaojuan Yang ◽  
Miguel de Lucas Pardo ◽  
Maria Ibanez ◽  
Lijun Deng ◽  
Luca Sittoni ◽  
...  

Accelerating dewatering of fluid fine tailings (FFT) to facilitate land reclamation is a major challenge to the oil sands industry in Canada. A new method was tested, addition of Tubifex to FFT. Tubifex is an indigenous earthworm in Canada. The survival rate tests showed that Tubifex can survive in oil sands tailings and penetrate to 42 cm depth (maximum depth tested). Columns (5 L of FFT) were set-up with tailings alone, Tubifex treated tailings and polymer-Tubifex treated tailings. Test results showed that (a) the final mud–water interface of tailings alone was 26% higher than that of Tubifex treated tailings; (b) solids content of Tubifex treated tailings was 21% more than that of tailings alone; (c) Tubifex was capable to accelerate the dewatering process of both cationic and anionic polymer treated tailings; (d) anionic polymer was superior in facilitating long-term dewatering and its coupled effects with Tubifex were better than the cationic polymer.


Sign in / Sign up

Export Citation Format

Share Document