scholarly journals Influence of Weak Interlayer on the Mechanical Performance of the Bolted Rock Mass with a Single Free Surface in Deep Mining

Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 496
Author(s):  
Shuxue Ding ◽  
Yuan Gao ◽  
Hongwen Jing ◽  
Xinshuai Shi ◽  
Yanjun Qi ◽  
...  

The existence of the weak interlayer in the roadway surrounding rock mass presents a huge threat to the stability of the underground structure and the safety of mining engineering. By the characteristics of strong adaptability, superior anchoring effect and high efficiency of construction, rock bolt has been widely applied in mine reinforcement. However, the influence of the weak interlayer on the compressive performance of the bolted rock mass is still poorly understood due to the challenges in constructing an efficient experimental platform and complex testing processes. Here, we used the self-developed test system to investigate the influence of the thickness, uniaxial compressive strength, and dip angle of the weak interlayer on the compressive behavior of the bolted rock mass with a single free surface. The results show that the weak interlayer has a great weakening effect on the peak strength and elastic modulus of the specimens due to its low mechanical properties, as well as influencing the crack distribution and failure mode of the samples. As the strength of the weak interlayer is lower than 1.27 MPa, the thickness exceeds 20 mm, and the dip angle exceeds 15°, the synergistic bearing effect will be significantly reduced and affect the mechanical performance of the specimens. The evolution of the bolt force and bending moment are greatly impacted by the deformation process which could be divided into distinct stages of destruction, thereby providing an excellent detection method for judging the stability of the surrounding rock of the mine. The discovery of this research promote a better understanding of the impact of the weak interlayer on mining engineering and guide the mine reinforcement in the future.

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Zhi Tang ◽  
Hao Wu ◽  
Jinguo Lv ◽  
Zhuangzhuang Xin ◽  
Wenbo Zuo

In order to improve the impact resistance and mechanical performance of anchor rods and satisfy the requirements for supporting rockburst roadways, the energy balance equation of the energy-absorbing support and roadway surrounding rock system is established. Moreover, to effectively prevent rockburst disasters, the energy criterion for roadway instability is derived. From the perspective of an energy-absorbing support, a yield-absorbing anti-shock anchor composed of a rod body, tray, constant resistance energy-absorbing device, and special-shaped nut is designed and developed; compared with ordinary anchor rods, this rod has stronger mechanical properties for resisting impact. Theoretical and numerical simulation studies show that the energy-absorbing device has a repeatable deformation failure mode and a constant yield force. The paper also presents the principle involved in the design of anti-shock bolt supports. The energy-absorbing support not only effectively guides and controls the release and conversion of impact energy but also consumes the impact energy in the buffering process of the anchor to ensure the stability of surrounding rock and support protection system. This study aims to provide reference for roadway support design and to improve rock bolts used in rockburst roadways.


2013 ◽  
Vol 405-408 ◽  
pp. 402-405 ◽  
Author(s):  
Yun Jie Zhang ◽  
Tao Xu ◽  
Qiang Xu ◽  
Lin Bu

Based on the fluid-solid coupling theory, we study the stability of surrounding rock mass around underground oil storage in Huangdao, Shandong province, analyze the stress of the surrounding rock mass around three chambers and the displacement change of several key monitoring points after excavation and evaluate the stability of surrounding rock mass using COMSOL Multiphysics software. Research results show that the stress at both sides of the straight wall of cavern increases, especially obvious stress concentration forms at the corners of the cavern, and the surrounding rock mass moves towards the cavern after excavation. The stress and displacement of the surrounding rock mass will increase accordingly after setting the water curtains, but the change does not have a substantive impact on the stability of surrounding rock mass.


2015 ◽  
Vol 777 ◽  
pp. 8-12 ◽  
Author(s):  
Lin Zhen Cai ◽  
Cheng Liang Zhang

HuJiaDi tunnel construction of Dai Gong highway is troublesome, the surrounding-rock mass give priority to full to strong weathering basalt, surrounding rock integrity is poor, weak self-stability of surrounding rock, and tunnel is prone to collapse. In order to reduce disturbance, taking advantage of the ability of rock mass, excavation adopt the method of "more steps, short footage and strong support". The excavation method using three steps excavation, The excavation footage is about 1.2 ~ 1.5 m; The surrounding rock bolting system still produce a large deformation after completion of the first support construction, it shows that the adopted support intensity cannot guarantee the stability of the tunnel engineering. Using ABAQUS to simulate tunnel excavation support, optimizing the support parameters of the tunnel, conducting comparative analysis with Monitoring and Measuring and numerical simulation results, it shows that the displacement - time curves have a certain consistency in numerical simulation of ABAQUS and Monitoring and Measuring.


2013 ◽  
Vol 838-841 ◽  
pp. 705-709
Author(s):  
Yun Hao Yang ◽  
Ren Kun Wang

Large scale underground caverns are under construction in high in-situ stress field at Houziyan hydropower station. To investigate deformation and damage of surrounding rock mass, a elastoplastic orthotropic damage model capable of describing induced orthotropic damage and post-peak behavior of hard rock is used, together with a effective approach accounting for the presence of weak planes. Then a displacement based back analysis was conducted by using the measured deformation data from extensometers. The computed displacements are in good agreement with the measured ones at most of measurement points, which confirm the validities of constitutive model and numerical simulation model. The result of simulation shows that damage of surrounding rock mass is mainly dominated by the high in-situ stress rather than the weak planes and heavy damage occur at the cavern shoulders and side walls.


2018 ◽  
Vol 175 ◽  
pp. 03025
Author(s):  
Feng Zhou ◽  
Hongjian Jiang ◽  
Xiaorui Wang

The problem about the stability of tunnel surrounding rock is always an important research object of geotechnical engineering, and the right or wrong of the result from stability analysis on surrounding rock is related to success or failure of an underground project. In order to study the deformation rules of weak surrounding rock along with lateral pressure coefficient and burying depth varying under high geostress and discuss the dynamic variation trend of surrounding rock, the paper based on the application of finite difference software of FLAC3D, which can describe large deformation character of rock mass, analog simulation analysis of surrounding rock typical section of the class II was proceeded. Some conclusions were drawn as follows: (1) when burying depth is invariable, the displacements of tunnel surrounding rock have a trend of increasing first and then decreasing along with increasing of lateral pressure coefficient. The floor heave is the most sensitive to change of lateral pressure coefficient. The horizontal convergence takes second place. The vault subsidence is feeblish to change of lateral pressure coefficient. (2) The displacements of tunnel surrounding rock have some extend increase along with increasing of burying depth. The research conclusions are very effective in analyzing the stability of surrounding rock of Yunling tunnel. These are going to be a reference to tunnel supporting design and construction.


2011 ◽  
Vol 243-249 ◽  
pp. 3538-3545
Author(s):  
Yong Dong Jiang ◽  
Ling Xiong ◽  
Xing Yang Yang ◽  
Quan Zhen ◽  
Zong Ling Yan

In this research, the MTS815 rock mechanics test system , produced by American MTS co., has been conducted with transient method to study the seepage characteristics of rock under different confining pressure. Experiments have obtained the following results: with the confining pressure increased, penetration ability of water in rock decreased, but the start-up pressure gradient increased; permeability of rock decreased with the increase of effective confining pressure, which had negative exponent functional relationship between them. Based on previous researches, the study has established filtration equation which couples with stress field, temperature field and seepage field. Combined with the practical tunnel project, numerical simulated the variation characteristics of deformation of tunnel surrounding rock, pore pressure and seepage field under three fields non-coupling and coupling, numerical simulation obtained: the difference among deformation of surrounding rock, pore pressure and seepage field distribution under the coupling and non-coupling is remarkable, so it must consider the simultaneous action of fluid - solid - heat when we need to research the working of seepage law of groundwater in tunnel rock mass, and the research results enjoy important theoretical significance and practical application value.


2014 ◽  
Vol 602-605 ◽  
pp. 594-597 ◽  
Author(s):  
En An Chi ◽  
Tie Jun Tao ◽  
Ming Sheng Zhao ◽  
Qiang Kang

Based on the discrete element numerical simulation, the change of failure modes of slope influenced by parameters of rock mass structural plane is studied. It is shown the failure modes shift gradually from the bedding sliding failure modes to the sliding-bending failure modes with the increase of the strength of the rock mass structural plane; The slope failure modes are mainly sliding failure modes with the increasing of the normal and shear stiffness and spacing of rock structural plane. Failure modes shift from shearing slip failure modes to shearing slip and buckling failure modes and finally to the tilting failure modes with the increase of the rock structural plane dip angle. The impact of the rock structural plane cohesion to the slope stability is the greatest, and the stiffness is the least.


2013 ◽  
Vol 706-708 ◽  
pp. 560-564
Author(s):  
Yi Huan Zhu ◽  
Guo Jian Shao ◽  
Zhi Gao Dong

Soft rock is frequently encountered in underground excavation process. It is difficult to excavate and support in soft rock mass which has low strength, large deformation and needs much time to be out of shape but little time to be self-stabilized. Based on a large underground power station, finite element model analysis was carried out to simulate the excavation process and the results of displacement, stress and plasticity area were compared between supported and unsupported conditions to evaluate the stability of the rock mass.


2013 ◽  
Vol 838-841 ◽  
pp. 889-893
Author(s):  
Biao Li ◽  
Feng Dai ◽  
Nu Wen Xu ◽  
Chun Sha

The right bank underground powerhouse of Houziyan hydropower station is a typical deep-buried type with high geostress and complicated geological conditions. To monitor and analyze the stability of surrounding rock mass during continuous excavation of the powerhouse excavation and locate the potential failure zones, an ESG (Engineering Seismology Group) microseismic monitoring system manufactured in Canada was installed in April, 2013. The wave velocity of the monitoring system was determined through fixed blasting tests. And the average location error is the minimum while P-wave velocity is 5700m/s, less than 10m and meeting the system request. By combining the temporal and spatial distribution regularity of microseimic events with field excavation, micro-crack clusters and potential instability zones were identified and delineated. The results will provide a reference for later excavations and supports of the underground powerhouse. Furthermore, a new monitoring method can also be supplied for the stability analysis of surrounding rock mass in deep-buried underground powerhouses.


2021 ◽  
Author(s):  
Peng Li ◽  
Yunquan Wu ◽  
Meifeng Cai

Abstract The impact disturbance has an important influence on the safety of underground engineering openings. In this paper, based on the in-situ stress measurement and structural plane investigation, the model of jointed rock roadway was established using the discrete element method (3DEC) to study the instability and failure characteristic of roadway surrounding rock with dominant joint planes under impact disturbance and to further analyze the influence of different buried depths, impact stress wave peaks, and stress wave delays on the stability of the surrounding rock. The results show that the stability of the surrounding rock is poor, and the whole convergence deformation of the surrounding rock occurs under the impact stress wave. There are three failure modes in the surrounding rock: tensile-shear failure, tensile failure, and shear failure. Tensile-shear failure mainly occurs in a small range close to the roof and floor of the roadway and the free surfaces of the two sides, and tensile failure occurs locally, while shear failure mainly occurs along the joint plane outside this range. Moreover, the greater the buried depth and stress wave peak value, the more serious the deformation of the surrounding rock. With the increase of stress wave delay, the deformation of the surrounding rock shows complex characteristics. In addition, the impact failure mechanism of the surrounding rock in jointed rock masses was discussed. The research results have important guiding significance for the prevention and control of underground engineering cavern disasters.


Sign in / Sign up

Export Citation Format

Share Document