scholarly journals The Relation between Trace Element Composition of Cu-(Fe) Sulfides and Hydrothermal Alteration in a Porphyry Copper Deposit: Insights from the Chuquicamata Underground Mine, Chile

Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 671
Author(s):  
Constanza Rivas-Romero ◽  
Martin Reich ◽  
Fernando Barra ◽  
Daniel Gregory ◽  
Sergio Pichott

Porphyry Cu-Mo deposits are among the world’s largest source of Cu, Mo, and Re, and are also an important source of other trace elements, such as Au and Ag. Despite the fact that chalcopyrite, bornite, and pyrite are the most common sulfides in this deposit type, their trace element content remains poorly constrained. In particular, little is known about minor and trace elements partitioning into Cu-(Fe) sulfides as a function of temperature and pH of the hydrothermal fluid. In this study, we report a comprehensive geochemical database of chalcopyrite, bornite, and pyrite in the super-giant Chuquicamata porphyry Cu-Mo deposit in northern Chile. The aim of our study, focused on the new Chuquicamata Underground mine, was to evaluate the trace element composition of each sulfide from the different hydrothermal alteration assemblages in the deposit. Our approach combines the electron microprobe analysis (EMPA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) of sulfide minerals obtained from six representative drill cores that crosscut the chloritic (propylitic), background potassic, intense potassic, and quartz-sericite (phyllic) alteration zones. Microanalytical results show that chalcopyrite, bornite, and pyrite contain several trace elements, and the concentration varies significantly between hydrothermal alteration assemblages. Chalcopyrite, for example, is a host of Se (≤22,000 ppm), Pb (≤83.00 ppm), Sn (≤68.20 ppm), Ag (≤45.1 ppm), Bi (≤25.9 ppm), and In (≤22.8 ppm). Higher concentrations of Se, In, Pb, and Sn in chalcopyrite are related to the high temperature background potassic alteration, whereas lower concentrations of these elements are associated with the lower temperature alteration types: quartz-sericite and chloritic. Bornite, on the other hand, is only observed in the intense and background potassic alteration zones and is a significant host of Ag (≤752 ppm) and Bi (≤2960 ppm). Higher concentrations of Ag and Sn in bornite are associated with the intense potassic alteration, whereas lower concentrations of those two elements are observed in the background potassic alteration. Among all of the sulfide minerals analyzed, pyrite is the most significant host of trace elements, with significant concentrations of Co (≤1530 ppm), Ni (≤960 ppm), Cu (≤9700 ppm), and Ag (≤450 ppm). Co, Ni, Ag, and Cu concentration in pyrite vary with alteration: higher Ag and Cu concentrations are related to the high temperature background potassic alteration. The highest Co contents are associated with lower temperature alteration types (e.g., chloritic). These data indicate that the trace element concentration of chalcopyrite, bornite, and pyrite changed as a function of hydrothermal alteration is controlled by several factors, including temperature, pH, fO2, fS2, and the presence of co-crystallizing phases. Overall, our results provide new information on how trace element partitioning into sulfides relates to the main hydrothermal and mineralization events controlling the elemental budget at Chuquicamata. In particular, our data show that elemental ratios in chalcopyrite (e.g., Se/In) and, most importantly, pyrite (e.g., Ag/Co and Co/Cu) bear the potential for vectoring towards porphyry mineralization and higher Cu resources.

2020 ◽  
Vol 105 (6) ◽  
pp. 820-832 ◽  
Author(s):  
Aleksandr S. Stepanov ◽  
Leonid V. Danyushevsky ◽  
Ross R. Large ◽  
Indrani Mukherjee ◽  
Irina A. Zhukova

Abstract Pyrite is a common mineral in sedimentary rocks and is the major host for many chalcophile trace elements utilized as important tracers of the evolution of the ancient hydrosphere. Measurement of trace element composition of pyrite in sedimentary rocks is challenging due to fine-grain size and intergrowth with silicate matrix and other sulfide minerals. In this contribution, we describe a method for calculation of trace element composition of sedimentary pyrite from time-resolved LA-ICP-MS data. The method involves an analysis of both pyrite and pyrite-free sediment matrix, segmentation of LA-ICP-MS spectra, normalization to total, regression analysis of dependencies between the elements, and calculation of normalized composition of the mineral. Sulfur is chosen as an explanatory variable, relative to which all regressions are calculated. The S content value used for calculation of element concentrations from the regressions is calculated from the total, eliminating the need for independent constraints. The algorithm allows efficient measurement of concentrations of multiple chalcophile trace elements in pyrite in a wide range of samples, including quantification of detection limits and uncertainties while excluding operator bias. The data suggest that the main sources of uncertainties in pyrite composition are sample heterogeneity and counting statistics for elements of low abundance. The analysis of regression data of time-resolved LA-ICP-MS measurements could provide new insights into the geochemistry of the sedimentary rocks and minerals. It allows quantification of ratios of elements that do not have reference material available (such as Hg) and provides estimates on the content of non-sulfidic Fe in the silicate matrix. Regression analysis of the mixed LA-ICP-MS signal could be a powerful technique for deconvolution of phase compositions in complex multicomponent samples.


2001 ◽  
Vol 65 (2) ◽  
pp. 249-276 ◽  
Author(s):  
G. Tischendorf ◽  
H.-J. Förster ◽  
B. Gottesmann

AbstractMore than 19,000 analytical data mainly from the literature were used to study statistically the distribution patterns of F and the oxides of minor and trace elements (Ti, Sn, Sc, V, Cr, Ga, Mn, Co, Ni, Zn, Sr, Ba, Rb, Cs) in trioctahedral micas of the system phlogopite-annite/siderophyllite-polylithionite (PASP), which is divided here into seven varieties, whose compositional ranges are defined by the parametermgli(= octahedral Mg minus Li). Plots of trace-element contentsvs.mglireveal that the elements form distinct groups according to the configuration of their distribution patterns. Substitution of most of these elements was established as a function ofmgli. Micas incorporate the elements in different abundances of up to four orders of magnitude between the concentration highs and lows in micas of ‘normal’ composition. Only Zn, Sr and Sc are poorly correlated tomgli. In compositional extremes, some elements (Zn, Mn, Ba, Sr, Cs, Rb) may be enriched by up to 2–3 orders of magnitude relative to their mean abundance in the respective mica variety. Mica/melt partition coefficients calculated for Variscan granites of the German Erzgebirge demonstrate that trace-element partitioning is strongly dependent on the position of the mica in the PASP system, which has to be considered in petrogenetic modelling.This review indicates that for a number of trace elements, the concentration ranges are poorly known for some of the mica varieties, as they are for particular host rocks (i.e. igneous rocks of A-type affiliation). The study should help to develop optimal analytical strategies and to provide a tool to distinguish between micas of ‘normal’ and ‘abnormal’ trace-element composition.


2019 ◽  
Vol 486 (5) ◽  
pp. 613-619
Author(s):  
M. Yu. Semenov ◽  
V. A. Snytko ◽  
Yu. M. Semenov ◽  
A. V. Silaev ◽  
L. N. Semenova

The metal composition of water and bottom sediments of southern Lake Baikal tributaries was studied and the water migration coefficients for micro- and trace elements were calculated. The map showing the study area divided into zones according to their ability to provide the certain water quality was drawn. The significant differences in mineralization, macro- and trace element composition between Lake Baikal water and tributary waters were found out. It was shown that values of water migration coefficients calculated for macro elements are similar in southern and main tributaries whereas coefficient values calculated for trace elements are quite different. This is due to dissolved matter sources such as rocks and deep ground waters which chemical composition is not typical for landscapes of Lake Baikal basin. The contribution of southern tributaries to macro element composition of lake water is between 7 and 15%, whereas tributaries contribution to trace element composition can hardly be evaluated because of higher element concentrations in riverine waters. The lower trace element concentrations in lake water with respect to riverine one is due to trace element migration in the form of complex organic compounds: long water residence time in lake favors to organic compounds decay by means of microbial- and photo-degradation followed by metal precipitation.


2018 ◽  
Vol 54 (4) ◽  
pp. 525-552 ◽  
Author(s):  
Xiao-Wen Huang ◽  
Émilie Boutroy ◽  
Sheida Makvandi ◽  
Georges Beaudoin ◽  
Louise Corriveau ◽  
...  

Clay Minerals ◽  
2014 ◽  
Vol 49 (1) ◽  
pp. 53-62 ◽  
Author(s):  
A. Papadopoulos ◽  
K. Giouri ◽  
E. Tzamos ◽  
A. Filippidis ◽  
S. Stoulos

AbstractSeven commercial cosmetic clays having different colour (white, green, pink and red) available in pharmacies and herbalists’ shops in the Greek market have been examined for their trace element concentrations (Ag, As, Ba, Be, Cd, Ce, Co, Cr, Cs, Cu, Ga, Hf, Hg, La, Mo, Ni, Pb, Rb, Sb, Sc, Se, Sr, Tl, V, Y, Zn and Zr). According to EC Regulation 1223/2009 the presence of As, Be, Cd, Cr, Hg, Ni, P, Pb, Sb, Se, Te, Tl, Zr and their compounds is prohibited in cosmetics. The most abundant trace elements in the white clays were P (330 μg/g), Pb (220 μg/g) and Zr (11 μg/g) and for the green clays were P (1250 μg/g), As (43 μg/g), Cr (31 μg/g), Pb (30 μg/g) and Ni (23 μg/g). Red and pink clays had lower concentrations of these elements than their white and green counterparts. The green clays are three times enriched in As and the kaolinite-rich white clays are nine times enriched in Pb compared to the Average Shale. The main mineral phase in the white clays is either kaolinite or calcite, in green clays smectite, in pink clay kaolinite and talc and in red clays it is vermiculite. The specific activities of 238U, 226Ra, 228Ra, 228Th and 40K were determined by γ-ray spectroscopy. The kaolinite-rich white clays are more enriched in 238U-series radionuclides (238U and 226Ra) than the smectitic green clays. In contrast, the green clays were more enriched in 232Th-series radionuclides (228Ra and 228Th) and 40K than the white clays.


World Science ◽  
2019 ◽  
Vol 1 (4(44)) ◽  
pp. 35-37
Author(s):  
Гогичаишвили Бела Арменовна ◽  
Дидбаридзе Изольда Сардионовна ◽  
Брегадзе Нестан Левановна ◽  
Махвиладзе Маиа Гелановна

Among the chemical elements contained in small quantities in mineral waters, of interest are trace elements that have a certain biological activity. According to the method developed by us, the content of copper, nickel, zinc, cobalt, chromium and manganese in certain mineral waters of Western Georgia was determined. The obtained data on the content of trace elements in mineral waters are of practical value, information about the trace element composition will contribute to the further study of these waters in hydrogeological, hydrochemical and balneological aspects.


2021 ◽  
Vol 82 (3) ◽  
pp. 55-57
Author(s):  
Milena Georgieva

Asenitsa unit metapelites (Central Rhodope massif) have a high variability in mineral, bulk chemical and trace element composition. Kyanite, staurolite and garnet are the major minerals in schists and show intensive retrograde change. Discrimination diagrams based on immobile trace elements indicate continental island arc or active margin setting of deposition.


2021 ◽  
pp. 32-47
Author(s):  
A.K. Gavrilchik ◽  
S.G. Skublov ◽  
E.L. Kotova

It was found as a result of SIMS study of beryl with various color zoning from the Uralian Izumrudnye Kopi that the content of a number of trace elements regularly varies to the margin of the crystal regardless of the color nature of the central and marginal crystal parts. The Na, Mn, Ga, Fe and Rb content increases towards the periphery of both crystals forming a U-shaped zoning. This pattern is less pronounced for Ni and Co. The Ti content, on the contrary, decreases towards the crystal margin forming a bell-shaped zoning. The distribution of a number of elements demonstrates another zoning pattern. For the beryl crystal (sample 24), the color saturation and transparency of which increases from a colorless to green-yellow from the center to the periphery of the crystal, the Sc, Cr and V forms U-shaped zoning with an increasing content to the margin of the crystal and Li exhibits a bell-shaped zoning. In transparent beryl crystal with more intense green color in the center (sample 25), the zoning pattern is dramatically distinct: bell-shaped for Sc, Cr and V and U-shaped for Li. The content of each element for both crystals coincides in the marginal zones, which have color comparable in intensity and transparency, despite the diferent color pattern with a sharply contrast¬ing distribution in the central part. In discriminant diagrams proposed for the identifcation of emeralds from various world regions, the composition of beryl from the Uralian Izumrudnye Kopi correspond to the feld of compositions of the Uralian emeralds or is close to them.


Author(s):  
F. Bea

ABSTRACT:The behaviour of trace elements during partial melting depends primarily on their mode of occurrence. For elements occurring as trace constituents of major phases (e.g. Li, Rb, Cs, Eu, Sr, Ba, Ga, etc.), slow intracrystalline diffusion (D ≍ 10−16 cm2 s−1) at the temperature range of crustal anatexis causes all effective crystal-melt partition coefficients to have a value close to unity and impedes further melt-restite re-equilibration. Usually, therefore, the trace element composition of crustal melts simply depends on the mass balance between the proportion and composition of phases that melt and the proportion and composition of newly formed phases. The behaviour of trace elements occurring as essential structural components in accessory phases (e.g. P, La-Sm, Gd-Lu, Y, Th, U, Zr, Hf, etc.) depends on the solubility, solution kinetics, grain size and the textural position of accessory phases. In common crustal protoliths a significant mass fraction of monazite, zircon, xenotime, Th-orthosilicates, uraninite; etc.—but not apatite—is included within other major and accessory phases. During low melt fraction anatexis the amount of accessory phases available for the melt is not sufficient for saturation, thus producing leucosomes with concentrations of La-Sm, Gd-Lu, Y, Th, U and Zr lower than expected from solubility equations. Low concentrations of these elements may also occur if the melt is prevented from reaching equilibrium with the accessories due to fast segregation. However, the first mechanism seems more feasible as leucosomes that are undersaturated with respect to monazite and zircon are frequently saturated, even oversaturated, with respect to apatite.


Sign in / Sign up

Export Citation Format

Share Document