scholarly journals Mineralogy, Fluid Inclusion, and C-O-Sr Isotope Geochemistry to Unravel the Evolution of the Magmatic-Hydrothermal System at the Igoudrane Silver-Rich Deposit (Imiter District, Eastern Anti-Atlas, Morocco)

Minerals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 997
Author(s):  
Mamadoudjan Diallo ◽  
Mohammed Bouabdellah ◽  
Gilles Levresse ◽  
Johan Yans ◽  
Francesca Castorina ◽  
...  

The Igoudrane mine with a total production of 700,000 t of ore grading 485 g/t Ag is currently one of the most productive mines in the Imiter district of the eastern Anti-Atlas in Morocco. The silver-rich ± base metal deposit occurs dominantly as vein- and hydrothermal breccia-hosted orebodies at the interface between the lower Ediacaran turbidites of the Saghro Group and the unconformably overlying, dominantly felsic volcanic, and volcaniclastic rocks of the late Ediacaran Ouarzazate Group. Higher-grade ores are lithologically hosted by the uppermost organic-rich black shale unit and structurally controlled by the intersection of subvertical NW- and NE-trending fault systems. Ore-related hydrothermal alteration includes, in order of decreasing abundance, carbonatization, silicification, sericitization, and chloritization. Three primary paragenetic stages of veining and associated silver ± base metal mineralization have been recognized: (1) early pyrite + quartz + Ag-bearing sulfides and sulfosalts; (2) main Ag-bearing sulfides and sulfosalts + calcite ± fluorite ± dolomite; and (3) late quartz + calcite + base-metal sulfides (galena, sphalerite, pyrite, chalcopyrite). Irrespective of the ore stage, the dominant Ag-bearing ore minerals are Ag-Hg amalgam, argentite, freibergite, acanthite, polybasite, pyrargyrite, and proustite. Fluid inclusion data show a trend of decreasing temperatures with time, from the main silver stage (Th = 180 ± 12 °C) to late base-metal stage (Th = 146 ± 7 °C), consistent with fluid mixing, cooling, and/or dilution. The coexistence of aqueous-rich and vapor-rich fluid inclusions together with variations in bulk salinity (NaCl + CaCl2) of the mineralizing fluids during the main silver stage, at similar temperatures, indicate that boiling and subsequent degassing occurred during the main ore-forming event due to a pressure decrease. Calculated δ18Ofluid values along with REE+Y and Sr isotope constraints suggest that the ore-forming fluids originated from a predominantly magmatic source, although incursion of meteoric waters during collapse of the hydrothermal system could have contributed to deposition. The post-ore, base-metal quartz-carbonate-dominated mineralization was deposited from dilute Ca-Na-Cl-bearing fluids at temperature below 150 °C. Overall, fluid–rock interaction with the black shales along major faults and thin permeable horizons, boiling-degassing—with subsequent fluid mixing, cooling, and/or dilution—were the main mechanisms of silver deposition.

2009 ◽  
Vol 21 (3) ◽  
pp. 255-267 ◽  
Author(s):  
Minoru Kusakabe ◽  
Keisuke Nagao ◽  
Takeshi Ohba ◽  
Jung Hun Seo ◽  
Sung-Hyun Park ◽  
...  

AbstractNew stable isotope and noble gas data obtained from fumarolic and bubbling gases and hot spring waters sampled from Deception Island, Antarctica, were analysed to constrain the geochemical features of the island's active hydrothermal system and magmatism in the Bransfield back-arc basin. The 3He/4He ratios of the gases (< 9.8 × 10-6), which are slightly lower than typical MORB values, suggest that the Deception Island magma was generated in the mantle wedge of a MORB-type source but the signature was influenced by the addition of radiogenic 4He derived from subducted components in the former Phoenix Plate. The N2/He ratios of fumarolic gas are higher than those of typical mantle-derived gases suggesting that N2 was added during decomposition of sediments in the subducting slab. The δ13C values of -5 to -6‰ for CO2 also indicate degassing from a MORB-type mantle source. The H2/Ar- and SiO2 geothermometers indicate that the temperatures in the hydrothermal system below Deception Island range from ~150°C to ~300°C. The δD and δ18O values measured from fumarolic gas and hot spring waters do not indicate any contribution of magmatic water to the samples. The major ionic components and δD-δ18O-δ34S values indicate that hot spring waters are a mixture of local meteoric water and seawater. Mn and SiO2 in spring waters were enriched relative to seawater reflecting water-rock interaction at depth.


Author(s):  
Aung Tay Zar ◽  
I Wayan Warmada ◽  
Lucas Donny Setijadji ◽  
Koichiro Watanabe

Gold and associated base metal mineralization of Onzon-Kabani area located in the western border of generally N-S trending Mogoke Metamorphic Belt where well-known Sagaing fault is served as a western boundary of this area. In this research area, many artisanal and small-scale gold mines were noted in last three decades. Gold mineralization is hosted in marble and gneiss unit of research area but most common in marble unit. Variety of igneous intrusions are also observed in research area. Mineralizations are observed as fissure filling veins as well as lesser amount of disseminated nature in marble unit. Mineralogically, gold are associated with other base metal such as pyrite, galena, sphalerite, chalcopyrite, marcasite and arsenopyrite. Hydrothermal alteration halos are developed in peripheral of hydrothermal conduits or mineralization veins from proximal to distal such as 1) silicic, 2) sericite-illite, and 3) propylitic alteration.  Most of hydrothermal minerals from each altered zones showed that near neutral condition of pH (e.g. adularia, calcite, illite, sericite and chlorite). Alternatively, hydrothermal alteration zones that show with ore minerals such as native gold, electrum, sphalerite, galena, chalcopyrite, arsenopyrite and marcasite which mostly observed in silicic alteration zone. Typical boiling characters of vein textures and fluid inclusion petrography are observed in hydrothermal system of research area. Boiling, cooling and mixing are possiblily responsible for gold deposition in hydrothermal system. In this paper, authors are documented to clarify the type of mineralization based on hydrothermal alterations, ore and gangue mineral assemblages and fluid inclusion study. All of these data can describe and play an important role for both with respect to understanding deposit genesis and in mineral exploration.


2020 ◽  
Vol 57 (1) ◽  
pp. 133-166
Author(s):  
Marie-Ève Lajoie ◽  
Stephen J. Piercey ◽  
James Conliffe ◽  
Daniel Layton-Matthews

Barite in the approximately 513 Ma Lemarchant volcanogenic massive sulphide (VMS) deposit, Newfoundland, consists of granular and bladed barite intimately associated with mineralization. Regardless of type, the composition of barite is homogeneous at bulk rock and mineral scale containing predominantly Ba, S, and Sr, with minor Ca and Na. The barite has homogeneous sulphur isotope compositions (δ34Smean = 27‰), similar to Cambrian seawater sulphate (25–35‰) and Sr isotope compositions (87Sr/86Sr = 0.706905 to 0.707485). These results are consistent with barite having formed from fluid–fluid mixing between Cambrian seawater and VMS-related hydrothermal fluids. The 87Sr/86Sr values in the barite are lower than mid-Cambrian seawater, which suggests that some of the Sr was derived from the underlying Neoproterozoic basement. Fluid inclusions in bladed barite are low-salinity, CO2-rich inclusions with homogenization temperatures between 245°–250 °C, and average salinity of 1.2 wt.% NaCl equivalent. Estimated minimum trapping pressures of between 1.7 to 2.0 kbars were calculated from aqueous–carbonic fluid inclusion assemblages. The fluid inclusion results reflect regional metamorphic reequilibration during younger Silurian regional metamorphism, rather than primary fluid signatures, despite the preservation of primary barite and fluid inclusion textures. These results illustrate that barite in VMS deposits records the physicochemical processes associated with VMS formation and the sources of fluids in ancient VMS deposits, as well as seawater sulphate and basement isotopic compositions. The results herein are not only relevant for the Lemarchant deposit but also for other barite-rich VMS deposits globally.


2020 ◽  
Vol 105 (11) ◽  
pp. 1712-1723
Author(s):  
Yu Zhang ◽  
Pete Hollings ◽  
Yongjun Shao ◽  
Dengfeng Li ◽  
Huayong Chen ◽  
...  

Abstract The origin of stratabound deposits in the Middle-Lower Yangtze River Valley Metallogenic Belt (MLYRB), Eastern China, is the subject of considerable debate. The Xinqiao Cu-Fe-Au deposit in the Tongling ore district is a typical stratabound ore body characterized by multi-stage magnetite. A total of six generations of magnetite have been identified. Mt1 is commonly replaced by porous Mt2, and both are commonly trapped in the core of Mt3, which is characterized by both core-rim textures and oscillatory zoning. Porous Mt4 commonly truncates the oscillatory zoning of Mt3, and Mt5 is characterized by 120° triple junction texture. Mt1 to Mt5 are commonly replaced by pyrite that coexists with quartz, whereas Mt6, with a fine-grained foliated and needle-like texture, commonly cuts the early pyrite as veins and is replaced by pyrite that coexists with calcite. The geochemistry of the magnetite suggests that they are hydrothermal in origin. The microporosity of Mt2 and Mt4 magnetite, their sharp contacts with Mt1 and Mt3, and lower trace-element contents (e.g., Si, Ca, Mg, and Ti) than Mt1 and Mt3 suggest that they formed via coupled dissolution and reprecipitation of the precursor Mt1 and Mt3 magnetite, respectively. This was likely caused by high-salinity fluids derived from intensive water-rock interaction between the magmatic-hydrothermal fluids associated with the Jitou stock and Late Permian metalliferous black shales. The 120° triple junction texture of Mt5 suggests it is the result of fluid-assisted recrystallization, whereas Mt6 formed by replacement of hematite as a result of fracturing. The geochemistry of the magnetite suggests that the temperature increased from Mt2 to Mt3 and implies that there were multiple pulses of fluids from a magmatic-hydrothermal system. Therefore, we propose that the Xinqiao stratiform mineralization was genetically associated with multiple influxes of magmatic hydrothermal fluids derived from the Early Cretaceous Jitou stock. This study demonstrates that detailed texture examination and in situ trace-elements analysis under robust geological and petrographic frameworks can effectively constrain the mineralization processes and ore genesis.


2021 ◽  
pp. 104429
Author(s):  
Zhixin Zhao ◽  
David L. Leach ◽  
Junhao Wei ◽  
Shengnan Liang ◽  
Katharina Pfaff

2021 ◽  
Author(s):  
Filipa Luz ◽  
António Mateus ◽  
Ezequiel Ferreira ◽  
Colombo G. Tassinari ◽  
Jorge Figueiras

Abstract The boundary in the Iberian Pyrite Belt is a world-class metallogenic district developed at the Devonian-Carboniferous boundary the Iberian Variscides that currently has seven active mines: Neves Corvo (Cu-Zn-Sn) and Aljustrel (Cu-Zn) in Portugal, and Riotinto (Cu), Las Cruces (Cu), Aguas Teñidas (Cu-Zn-Pb), Sotiel-Coronada (Cu-Zn-Pb), and La Magdalena (Cu-Zn-Pb) in Spain. The Iberian Pyrite Belt massive sulfide ores are usually hosted in the lower sections of the volcano-sedimentary complex (late Famennian to late Visean), but they also occur in the uppermost levels of the phyllite-quartzite group at the Neves Corvo deposit, stratigraphically below the volcano-sedimentary complex. A Pb-Nd-Sr isotope dataset was obtained for 98 Iberian Pyrite Belt metapelite samples (from Givetian to upper Visean), representing several phyllite-quartzite group and volcano-sedimentary complex sections that include the footwall and hanging-wall domains of ore horizons at the Neves Corvo, Aljustrel, and Lousal mines. The combination of whole-rock Nd and Sr isotopes with Th/Sc ratios shows that the siliciclastic components of Iberian Pyrite Belt metapelites are derived from older quartz-feldspathic basement rocks (–11 ≤ εNdinitial(i) ≤ –8 and (87Sr/86Sr)i up to 0.727). The younger volcano-sedimentary complex metapelites (upper Tournaisian) often comprise volcanic-derived constituents with a juvenile isotopic signature, shifting the εNdi up to +0.2. The Pb isotope data confirm that the phyllite-quartzite group and volcano-sedimentary complex successions are crustal reservoirs for metals found in the deposits. In Neves Corvo, where there is more significant Sn- and Cu-rich mineralization, the higher (206Pb/204Pb)i and (207Pb/204Pb)i values displayed by phyllite-quartzite group and lower volcano-sedimentary complex metapelites (up to 15.66 and 18.33, respectively) suggest additional contributions to the metal budget from a deeper and more radiogenic source. The proximity to Iberian Pyrite Belt massive sulfide ore systems hosted in metapelite successions is observed when (207Pb/204Pb)i &gt;15.60 and Fe2O3/TiO2 or (Cu+Zn+Pb)/Sc &gt;10. These are important criteria that should be considered in geochemical exploration surveys designed for the Iberian Pyrite Belt.


Sign in / Sign up

Export Citation Format

Share Document