scholarly journals In-Situ LA-ICP-MS Uraninite U–Pb Dating and Genesis of the Datian Migmatite-Hosted Uranium Deposit, South China

Minerals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1098
Author(s):  
Long Cheng ◽  
Chengjiang Zhang ◽  
Hao Song ◽  
Qian Cheng

The Datian uranium deposit is a migmatite-hosted, high temperature, hydrothermal deposit in the Kangdian region. Detailed information on the chemical composition and formation age of the uraninite remains lacking, which impedes our understanding of uraninite genesis. Two phases of uraninite have been identified according to their relationships with other minerals and their field relationships. The phase 1 (Ur1) uraninite is characterized by local development of microfractures and pores in the crystal of uraninite, a scattered distribution, and irregular crystal shapes, and it is associated with ilmenite, biotite, and rare earth element (REE) minerals (monazite and xenotime). The phase 2 uraninite (Ur2) has anhedral crystal shapes with well-developed microfractures and pores and is associated with pyrite, albite, pyrrhotite, molybdenite, zircon, and chlorite. X-ray element mapping revealed that the distributions of U, Th, and Pb in the Ur1 uraninite are homogeneous, whereas those in the Ur2 uraninite are heterogeneous. The results of the electron microprobe analysis (EMPA) show that the UO2 and PbO contents of the Ur1 and Ur2 uraninite do not vary significantly. The high ThO2 contents of the Ur1 (1.08–1.68 wt %) and Ur2 uraninite (3.41–4.83 wt %) indicate that they formed at different temperatures. The laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analysis results show that the ∑REE of the Ur1 uraninite (3747.5–7032.3 ppm) is lower than that of the Ur2 uraninite (8369.2–11,484.3 ppm), and the REE patterns of the Ur1 and Ur2 uraninite are sickle-shaped with large negative Eu anomalies. The LA-ICP-MS U–Pb dating results revealed that the ages of the Ur1 (841.4 ± 4.0 Ma) and Ur2 (834.5 ± 4.1 Ma–837.2 ± 4.5 Ma) uraninite are in consistent with that of the migmatite. Thus, the Datian uranium deposit underwent at least two hydrothermal events, and the uraninite was formed due to the migmatization.

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
M. Ramacciotti ◽  
S. Rubio ◽  
G. Gallello ◽  
M. Lezzerini ◽  
S. Columbu ◽  
...  

Forty-two mortar samples, from two archaeological excavations located in Sagunto (Valencian Community, Spain), were analysed by both portable energy dispersive X-ray fluorescence spectroscopy (pED-XRF) and inductively coupled plasma mass spectrometry (ICP-MS) to determine major and minor elements and traces including rare earth elements (REEs). Collected data were crossed with those previously obtained from Sagunto Castle mortars, and principal component analysis (PCA) was applied to discriminate the construction phases of the unearthed buildings. REE permitted to ascribe most of the masonries to the Roman Imperial period. Moreover, a statistical model was built by employing partial least squares discriminant analysis (PLS-DA) in order to classify the mortars from Roman Imperial period and from Islamic period due to the problematic overlapping between these two phases. Results confirmed the effectiveness of the developed indirect chronology method, based on REE data, to discriminate among historic mortars from different construction periods on a wide scale including different Sagunto archaeological sites.


2019 ◽  
Author(s):  
Ingo Strenge ◽  
Carsten Engelhard

<p>The article demonstrates the importance of using a suitable approach to compensate for dead time relate count losses (a certain measurement artefact) whenever short, but potentially strong transient signals are to be analysed using inductively coupled plasma mass spectrometry (ICP-MS). Findings strongly support the theory that inadequate time resolution, and therefore insufficient compensation for these count losses, is one of the main reasons for size underestimation observed when analysing inorganic nanoparticles using ICP-MS, a topic still controversially discussed.</p>


Sign in / Sign up

Export Citation Format

Share Document