scholarly journals Airflow Velocity Designing for Air Classifier of Manufactured Sand Based on CPFD Method

Minerals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 90
Author(s):  
Shuhua Peng ◽  
Yu Wu ◽  
Jing Tao ◽  
Jianbin Chen

Airflow classification is the key technology for the dry separation of manufactured sand. To solve the problem of low separation accuracy and poor gradation grade, the classification process of manufactured sand under different inlet and outlet airflow velocities changes in the multi-air inlet classifier is simulated by using Barracuda based on Computational Particle Fluid Dynamics (CPFD) method. The influence of various airflow velocity in air inlets and outlet on the sand classification is analyzed. The optimal combination of airflow velocity that meets the design goals is obtained. The results show that the airflow velocity and location of the air inlet and outlet have a significant impact on medium-grained (0.15~1.18 mm) and fine-grained (0.075~0.3 mm) sand. Adjusting the airflow velocity at air inlet 2 and air outlet can most effectively change the overall sand separation effect, while 41 m/s (inlet 2) and 6 m/s (outlet) would be the best velocity combination.

2013 ◽  
Vol 37 (3) ◽  
pp. 641-653
Author(s):  
Hsu-jeng Liu ◽  
Chih-chun Su ◽  
Sheng-liang Huang

This study applies FLUENT to simulate and analyze the flow characteristics in the engine compartment of a light aircraft. The air inlet, air duct, guide vane, and air outlet are designed to improve the flow conditions according to the drawbacks of the prototype model. The results show that the air duct and guide vane lead the airflow to the certain position of cylinders, and the air outlet reduces the pressure in the engine compartment. Moreover, combining these designs significantly increases the overall airflow velocity in the engine compartment.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Bingwen Wang ◽  
Tingyong Xiong ◽  
Lijing Gao ◽  
Yuepeng Chai ◽  
Xiangyu Cui ◽  
...  

The key technology in filling mining is the gravity transportation of high-density slurries, and the filling system design is a significant part of this technology. The filling effect depends on the fluidity of the filling slurry. To investigate the influence of the gradation of tailings on the rheological properties of the filling slurry, this study uses particle size analysis to prepare three types of tailings: powder-, relatively fine-, and fine-grained tailings, which are then mixed in different proportions. The rheological properties of the resulting filling slurries are tested; the viscosity coefficients and yield stresses of the slurries are obtained using the analysis software provided with the MCR102 advanced rheometer that is used to measure the rheological properties of the slurries. The experimental results demonstrate that there is no absolute relationship between the rheological properties of the slurry and the size of the tailings particles, but the rheological properties are related to the gradation of tailings. Lubricating effect is weakened with an insufficient content of powder-grained particles in the tailings. On the contrary, when the content of powder-grained particles in the tailings is too high, the viscous substances in the slurry increase. Both of these conditions can increase the friction loss of the slurry.


2012 ◽  
Vol 516-517 ◽  
pp. 1074-1077
Author(s):  
Xue Feng Zhao ◽  
Li Min He ◽  
Li Xin Zhao ◽  
Sheng Zhong ◽  
Yang Wang

Based on computational fluid dynamics (CFD) method, applying FLUENT software, taking a de-oil hydrocyclone as an original structure, the effect of porous overflow pipe on the performance and pressure characteristics is analyzed. Effect of overflow-pipe length and diameter of the porous overflow-pipe (POP) hydrocyclone is studied. It is found that the extension of overflow-pipe length can play a coalescent role; the new type hydrocyclone can increase oil content around overflow outlet so as to be beneficial for the enhancement of separation effect.


Author(s):  
Bofu Wu ◽  
Jinlai Men ◽  
Jie Chen

This paper presents a numerical study to predict the particle separation performance of a dust-settling hopper using computational fluid dynamics. The Euler-Lagrange approach was employed to analyze the particle separation efficiency and the outflow particle concentration of the dust-settling hopper under different inlet airflow velocities. The calculation results obtained reveal that the overall particle separation efficiency and the outflow particle concentration decrease with the increase of the inlet airflow velocity, and the particle grade efficiency increases with particle size. Since there is a paradox between the particle separation performance and the particle removal performance for a street vacuum sweeper, it is necessary to counter-balance the effects of the inlet airflow velocity on them. According to the simulation analysis, an appropriate inlet airflow velocity is provided for the design of the dust-settling hopper.


2012 ◽  
Vol 197 ◽  
pp. 221-228
Author(s):  
Dan Feng Shen ◽  
Hui Zhao

On the basis of fluid dynamics, this paper deduced the pull force formula of main nozzle on air-jet loom and introduces a method of experiment to test the airflow velocity in the exit of nozzle. The effect of different parameter structure of main nozzle on the pull force had been studied. It was observed that the inlet of thread tube was a bottleneck of main nozzle and the main development of main nozzle lengthens the thread tube. The theoretical findings were found to be in good agreement with experiment finding and this verified that the formula for pull force was reasonable.


2006 ◽  
Vol 95 (6) ◽  
pp. 1382-1392 ◽  
Author(s):  
Matthew S. Coates ◽  
Hak-Kim Chan ◽  
David F. Fletcher ◽  
Judy A. Raper

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256460
Author(s):  
Qiwei Xiao ◽  
Neil J. Stewart ◽  
Matthew M. Willmering ◽  
Chamindu C. Gunatilaka ◽  
Robert P. Thomen ◽  
...  

Computational fluid dynamics (CFD) simulations of respiratory airflow have the potential to change the clinical assessment of regional airway function in health and disease, in pulmonary medicine and otolaryngology. For example, in diseases where multiple sites of airway obstruction occur, such as obstructive sleep apnea (OSA), CFD simulations can identify which sites of obstruction contribute most to airway resistance and may therefore be candidate sites for airway surgery. The main barrier to clinical uptake of respiratory CFD to date has been the difficulty in validating CFD results against a clinical gold standard. Invasive instrumentation of the upper airway to measure respiratory airflow velocity or pressure can disrupt the airflow and alter the subject’s natural breathing patterns. Therefore, in this study, we instead propose phase contrast (PC) velocimetry magnetic resonance imaging (MRI) of inhaled hyperpolarized 129Xe gas as a non-invasive reference to which airflow velocities calculated via CFD can be compared. To that end, we performed subject-specific CFD simulations in airway models derived from 1H MRI, and using respiratory flowrate measurements acquired synchronously with MRI. Airflow velocity vectors calculated by CFD simulations were then qualitatively and quantitatively compared to velocity maps derived from PC velocimetry MRI of inhaled hyperpolarized 129Xe gas. The results show both techniques produce similar spatial distributions of high velocity regions in the anterior-posterior and foot-head directions, indicating good qualitative agreement. Statistically significant correlations and low Bland-Altman bias between the local velocity values produced by the two techniques indicates quantitative agreement. This preliminary in vivo comparison of respiratory airway CFD and PC MRI of hyperpolarized 129Xe gas demonstrates the feasibility of PC MRI as a technique to validate respiratory CFD and forms the basis for further comprehensive validation studies. This study is therefore a first step in the pathway towards clinical adoption of respiratory CFD.


Processes ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 427 ◽  
Author(s):  
Nipon Denmud ◽  
Kradsanai Baite ◽  
Thawatchai Plookphol ◽  
Somjai Janudom

In the present study, the effects of operating parameters, namely, rotor speed, feed rate, and inlet air velocity, on the cut diameter of a cage-type separator were studied. The design of experiments (DOE) method was used to investigate the relationship between the operating parameters and the cut size. The experimental results were statistically analyzed using MINITAB 16 software. Both the rotor speed and air inlet velocity had significant main effects on the cut size. The feed rate was also significant but had a weak effect with respect to the rotor speed and inlet air velocity effects. The cut size decreased with an increase in rotor speed and increased with an increase in air inlet velocity. However, the cut size slightly decreased with an increase in feed rate. An empirical multiple-variable linear model for predicting the cut size of the classification was created and presented. The results derived from the statistical analysis were in good agreement with those from the experiments, additionally extended from the DOE. The optimal conditions for classification of SAC305 powder with size range 25–40 μm were obtained when the turbo air classifier was operated at rotor speed 406 RPM, the feed rate 4 kg/h, and the air velocity 5 m/s. The smallest cut size of the classifier was about 27.8 μm.


Sign in / Sign up

Export Citation Format

Share Document